) BOSCH

BHy2xx/BHI3xx
Ultra-low power high performance Smart Sensor Hub
with integrated sensors

BHy2xx/BHI3xx Programmer’s Manual

Document revision 2.6

Document release date March , 2024

Document number BST-BHy2xx-BHI3xx-AN002-06

Technical reference code(s) 0273141367 0273 141392

Notes Data and descriptions in this document are subject to change without notice.

Product photos and pictures are for illustration purposes only and may differ
from the real product appearance. The technical details and legal disclaimer
of the respective product data sheet apply.

Confidential and under NDA

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

Table of Contents

2|7

List of Figures

List of Tables

General description

1 Prerequisites and installation

1.1 COMPIIET t0OICNAINS. ...ttt eeeettr e e eeeabaaereeeeeessessstasseeessesssssssssesesessssssssnssessssnnssssens
1.1.1 Obtaining and installing the Synopsys MetaWare C COMPIIETccc.euurriiiieiiiieeciieiee e e ccvanneeea
1.1.2 Obtaining and installing the GNU C compiler for BHY2XX/BHIBXXcceeeirveeeeeirveeeeeirreeeeeirreeeeeireeeeeeiseeeenenns

1.2 Software Development Kit for BHY2XX/BHIBXXcoorviieirrreeeiiirieeeeeieeeeeireeeeeereeeeesseeeeessseesessssessessssssssssssasessnnns
T.20T LINUX cetitiieiie ettt ettt ettt et st s et e s mee e et e s bt e s eme e e s bee s eme e e s abee s meeeeabte s ba e e en e e e e nae e nete s st e e enaeeeraesnes
T.2.2 WINAOWS ..ttt ettt st s sttt e e e e st sa e est e mt et e s e e sane s st sane e st e ntesmeesmneemntenntenns

2 SDK structure and features

2.1 SDK and firMWare STIUCIUIEceitieieeieetteeteete ettt et et st e et e et e st e st e et e st e satesbe s st e bt eeateentesaseeaseeseenns
2,11 OVErVIEW Of SDK STUCTUIE ..ottt ettt ettt ettt e s st et re st et e s s s e sse s eaesmeeneen
2.1.2 Overview Of fITMWAre STTUCIUIE........cccciiiiriieieteteeteet ettt ettt et et esaeesaee s sme e seeemeene
2.1.3 Available memory resources for CUSTOM COdE.......coccuiiiieeiiiiececeeeeectee et ee e e e ere e e e abe e e s e enaaee e
2.1.4 Memory Configuration and MEMOIY MaPeeeeecveeeeeiireeeeeireeeeeiirreeeerreeeeesseeeeesseeeeesssseeesssseessssssessssnsaees

2.2 Firmware configuration (using board configuration fil€)cueeeueeeiiieiieecceeecee e
Bt B €1 o) o =1 W oo 1 1={U L= 1 (o] s OSSR SU U
B N o 01V £ (o= 1 I [1YL= SRR
2.2.3 ViU AFVEIS ...ttt ettt ettt ettt s e s s et e bt et e et e e e e s et sase e st e meesmaesaeesasesanesaneenneens

2.3 Build system and DUl tarLS ..cceeeeeeeeiiiieee ettt e e e rree e e e e s e e et rae e e e e s e nrraaaaaeeaeennnes
2.3.1 COMPIING fIIMWATIEuveieeeiieeeeeirieeeeiteeeeecteeeeerreeeeeebeeeeesseseeestsseeeessssseeesssaseeesssssesessssseeensssseesnssssessnnnnens
2.3.2 Configuring the firmware build (using the main CMake fil€)........ccueeeueeeiieecieeeieeeeeeece e
2.3.3 Selecting the t00ICNAINcoii it e e e e e e reree e e e e see e narereaeeeeseensssanaaaeasssannns

3 BHy2xx/BHI3xx driver architecture

T B 1T o 1= = I { Lo T o e =1 = USSR

4 Software development for BHy2xx/BHI3xx using the software framework

4.1 SENSOF AFVET OVEIVIEW ...eouniiiiiiiieiiiiteetestesee st e et et e et e s sae s et s at e st e e st e sseesaeesanesane s st saseeeneesntesnsesnnesnntennt
o O YT 1Yo T e [V7T R Y o 1= UUU
4.1.2 Predefined SENSOIS.....c..ii ittt ettt st s et et e bt e st e st e st e st e e bt e st e st e s aee st e satesbe s reeaneeeneeeneenn
O B YT 1Yo Tl o] o] 1 VA 1LY/ U
4.1.4 SeNSOr trZEEI CHAINING....ciiiciieiiecitee ettt ettt e eectee e eeeteeeeeeteeeeesataeesesaaeesssaaesssseaeesssssassansssasssssssaessssseens
4.1.5 Driver NANG AEIECHONooiieeeeiee et etee e eertee s e e ettae e seesaeeeeeseaeeeensbaeesnnseaassnnsenasennsenens

L B TV S0 1Yot (o] A (([(| SR

4.3 Driver CMaKeLISTS.EXE i@ «...eeeueieieeiieieeeeeee ettt ettt st s e s s e be et e s e s e e saeesmeesaseenne

4.4 ChecKing for @XIStNG DIVEL IDS.....ccccccuiiiieciieeicciieececiee e ceeteeeeeeteeeeeetaeeeessaaeesesseeseessassaesesassssesesssssassenssenens

O I Y g T = [GV T g oo Yo [P

/BTt B = ¥=YodoY 0 0 4T g 1o [=Yo M1 o (U e (S 11 (=T

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

.
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

4.5.2 Sensor COMMUNICALION SUPPOIT........uuiieeeiieeiirirteeeeeeeeiiitteeeeeeeeeesstreeeeseseasasssersessssssassssssssssssesesssssssssessssssssssnsesees 31
R BT 1Yo T o Loy Yol 1 (o B i (1[4 (1 (=R 33
A4.5.4 SenSOr AriVEr FUNCHONSco.uiiiieiieiieteeteeee ettt et ste ettt s e s e s e s s e st e st e e e e s e e e ee e st s st esmeesmeesaeesaness 40
4.5.5 Using custom sensor IDs to send data to the NOSt..........ueiiiiiee e e 44
4.5.6 Connection between Driver ID and SENSOT IDccccceiiiiiiiniiiiiiieteeteete ettt s et esseeseesresnees 45
4.5.7 Virtual SeNSOr oSt INTEITACEccueiiiiiiieeeeee ettt sttt s e st s e s s et e st smeesmeesmeesanenn 45
4.5.8 HaNAIING SPECIAI CASES...uuuiiieiiiiecciiiiieee e ettt e e e eeeectee e e e e s eeeesbareeeeeeeeeeessseraaeeaaseassssesassssesaasssssaaesssesasnssensaeees 45
o Y= o o e =Y = W gV [T ea 1 o] g W [V=Y PR USURRRRURRt 46
i ST B [0 1 1 = 14 L4 (o] o F RSO P T T RO RRTSRT SRS PR 46
I Y Y- 10 4] o [T =Y (ISR 46
T B €T =L Y- 11 910 [T - L= U 46
4.6.4 Other requIred SENSOr FUNCHIONSuvviieeeiieciiiieeeee ettt e ceeeerirreeeeeeeeeeessarsseeeesssssssssseseesesersssssssssesssnsssssssssees 46
4.6.5 Driver config file and cusStom DOAId fil@eeeeeeeeiiieeeeeeeee e e e e ree e e e ae e e 47
A7 Driver COOING FEQUITEMENESuvvvrieeeeeeeiciiireeeeeeeeeieireteeeeeeeeeersreseeeseeesessssssssseesesssssssssssseesesssssssssssssesessnsssssssesessesssssnns a7
4.8 EXAMPIE VIFUAI SENSOT UIIVEIS ..uvvveiiiiieeiiiiieeeeeeeeeieittreeeeeeeeeeiittreeeeeeeeessssssssesessssssssssssesessessssssssssseesssssssssssssessssenssssns 50
4.8.1 CONLINUOUS VIFTUAI SENSOT c...euiiiiiieiiieiieitieeeeiiteeeeriteseesteeessste e e s s bt esssssbteeesssbaaessssssasssssstesssssssesssssseessssseessssssees 50
4.8.2 ON-ChANZE VIFtUAI SENSON ..eeiiiiieeiiriieeeeeeeeceiirreeeeeeeeesitreeeeeeeeeeessssraeseeesessesssssssessesssssssssssseesesssssssssssesssensnssssnneeees 52
4.8.3 ONE-ShOt VIMUAI SENSOK ..eueiiiiiiieiieieeteee ettt ettt et et s e s ee s e s st et een e et e s e e e et ease e st esmeesmeesanesanens 53
4.9 Programming CUSIOM COUE EXIENSIONS....cccuutieeeiiiieeeeiiteeeeiiteeeeitteeeeiteeeeessaeeaesssaseaesssseaasssassessssssssesssssesesssseeesnnssens 54
A.9.T OVEIVIEW ...ttt ettt ettt ee e s ae st e et e et e e e e s et s st s st e e st e s aeesanesasesese e st e st eenaeemaeemsteententesnnesanesaness 54
4.9.2 HOOK IMPIEMENTALIONuiiiiiieiieeiiitteeeeeeecrcireee e e eeeesrreeeeeeeeeeesssraaeeseessssssssssssessssesssssssseseesesesssssssssessennrssssassees 56
e G T o oY) Qo ¢ To YV 117 USSR UUR S SSR 57
4.9.4 StOPPING NOOK EXECULION ..veeieeiieeiiieieeeeeeeeccteeeee e eeee e e e e e eeeeestrreeeeeeeeessssraseseesssssssssesessesessssssssseeesenssnsssnneees 57
4.9.5 Accessing data from NOOKScoccuiiiiiiiiecceeeeee et e ee e e s re e e e er e e e s e e e e s aae e e s seaea s e ssaaeessnsaaessnseens 57
9.6 USQEE wiiiiiiiieeiiiiieieiieeeeitttee et e s eesettreeeeseesss s taaaeeesess s s rataaaeeeseas e r bttt aaeeeeaa bttt aaeeeeeea et aaaeeeeeenanrrtaaaaeeeeenssrrraaaaees 57
4.10 Programming custom USEr MOAE [IDFAMESceeeeieeiiiieieeeeeeeccttere e e eeeeectree e e e e e e rreeeeeeeeeesnssrssaeeeesessnssssraseeeesennnnsens 58
4,11 USING CUSTOM PATAMELELSveiiieriieeeeiiieeeeitteeeeiteeeeeitteeeeitaeeessssaeeassssaeessssssesssssssssssssssesssssssssesssseessssssssssssssesssssens 59
17T INALZATION c vttt st s e e s st e e e bt e s bt e e s b e e e st eessbeessbae e saesessae s saeeasstesssaesastaeesaeenssaeesaeensees 59
4.11.2 Parameter read NanGIEr.......c...oouiiiiiiiieecetetee ettt sttt et et e sae st s nt et s e snesane e 60
4.11.3 Parameter WHte NANGIETcc..oouiiiiiieeeeeee ettt ettt s e et e e s e s ee et e st e smeesmeesmeesaneen 60
4.12 Using general-purpoSe NOSt FEGISIEIScccuuiiiieeiieeeectte ettt ettt e e e e e see e s e ate e e e bae e s s aaee e e ssaea s e ssaaesessseeesnseens 61
4,13 WatChdOZ CONFIGUIALION .ec..evveeeeeiiieeeeiiee ettt eecreeeeerreeeeesbeeeeesbeeeeeaseeeeessssseeesssseeesssseeesssseeensssaesessssseesnssseeesnnnsees 62
L O 1\ oY ol e L= o TU T4 =4 o = ST 62
A.14.17 DEDUS MESSAEE ...uvvieieeiiieieeiiieeeeeitteeeeitteeeeiteeeeettaeeaestaeeaasssaaaassaaeaasssassassssessssaasasssstsseesssssssanssesessnssssesssssens 62
A.14.2 POSt MOMEM AALA ..eiviiiiiiieiieeeete ettt ettt sttt et e e e s e e s a e st et et e s e e e et st e e st e ne e s e e sanesane e 63
4.14.3 CUITENE SYSTEM tIME .ttt ettt e e eeeerreeeeeeeeeessbssaaeeeesessssssssssesessessssssssseesssessssssssseeesnnnssssssssees 64
4.14.4 MONIOFNE SEACK USAEE...ueiieeuiiiieeiiiieeeeitieeeeiteeeeectteeeestteeeeesbeeeeesasaaeaessaaeaasssaseaansssasaesssssasassssesanssesssenssesessnnssens 65
.15 USING RTOS APIS <.ttt ettt ettt et e et s et e at e st e st e st e e bt e bt e e st e e at e et e e st e st e entesatesatesabeeaseeseesseesntanns 65
5 References 68

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 4|71
6 Legal disclaimer 69
6.1 ENZINEEIING SAMPIES ..ottt ettt eeee et e e e e eeeetrreeeeeeeee s ssssaeeeeeessssssssaaaeseesesssssssaasessesanssssssseaeeeennnssssnneees 69
5.2 PrOUUCE USE ..ttt ettt e ettt st s s e st e bt e e s e e et e st e e se e e st e st e smeeemeesaaesaseeaseeeseeeneeeneesnaeemeeemneenns 69
[SRSIAY oo [Tor=\ i [g I =Y €1 1] o] [ST3R= U To I] | €SS 69

7 Trademark notice 70
70

8 Document history and modifications

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 5|71

List of Figures

Figure 1: Structure of the BHy2xx/BHI3xX SOftWare FrameEWOIK..........ccccuiiieeiiiieeeiiieeecciieeeeecreeeeecteeeeeceee e e enraeeseabaeesennaaeens 7
Figure 2: ARC GNU ToolChain DOWNIOA.ccciiiieeiiiiieeie et ee e eeeccttee e e e e seecearereeeeeeseesnssasaeeeseseensssssaeassassssnssssneesesenns 11
Figure 3: Available Memory Resources for Custom Code Development (White) and Reserved Memory (Blue) 15
FISUIE 4: FUSEI2 MEIMOTY MAP..uutttttieiiiireiiirtereeeeeeseiitrreeeessessessssnseessssssssssssssssssssssssssssssesssssssssssssssesssessssssssssssesssssssssssnasesssensas 16
Figure 5: Example Physical Driver CONfIGUIALIONcooc ittt e e e ee e e e ae e e s e rae e e e aae e e s asaaeeeensaaa s s nnenas 18
Figure 6: Example Virtual Driver CONfiIUIAtIoNoiiiciieiiiiieeeectteeeete ettt e s rtee e e e ree e e s sae e e s s srae e s s asaeessssaaesssnsasessnnseens 19
Figure 7: BHY2XX/BHI3XX DIVEr ArCHItECIUIEviieiieeiieeeieeeete ettt ee e e cte e e tee e te e e see e sseeessae e sasesnsaessssesnseeesssennsenan 21
Figure 8. EXAmMPIE THGEEI LiSt....ciiiciiieiieiiieeeeiiteeeeiiteeeectteeee st e e e et e e e s bee e e s bae e e s naaeeessssaaeasssaaeasssaaeassssseesassseaesssssesessnnsenes 28
Figure 9: Example of CompleX SENSOr DEPENUENCYcccuvveeeeiureieeeireeeeeireeeeeereeeeessreeeesseeeeesissseeesssseesssssseesssssesessssssessnssees 29
Figure 10: Custom Driver CMaKeListS.tXt EXAMPIEuuiiiiiieeitieeeeecceccirteee e e eeecetrreeeseeeeeesreeeeeeeeesensssaseeesesessnsssnsseessnnns 31
Figure 17: Driver INCIUAE FileS EXAMPIEuuiiiiiiieeeiieee ettt e e e e ecttee e e e e s e ctreeeeesseseesssstaeeeeseseennsssaaeaessssesssssnaeasesanans 31
Figure 12: Physical SENSOr Data HANAIINGcceeiiieeciiiiieeie ettt eeeccttteee e e e seecrreeeee e s e s eesasreseeeeseseennssssaeesssssssnnssssneesesanns 43
Figure 13: Virtual SENSor Data HANAIINEcooei ittt e e ettt e e e e e s e aaree e e e e s e s e e ssbsaaeeessssesnnsssaneasesannns 44
Figure 14: Sensor Data INJeCtion FUNCHON APIS........ iiiiiiiiiiiteeeececcciireee e e s seesiteeeeeesessesessaeaesssessssssssanessssesssssssnaeesssenns 46
Figure 15: Sensor Data Injection Structure for INitialiZation...........cccuiieeeciiie e e ee e e rae e e e 46
Figure 16: ContinUoUS Virtual SENSOr — HEAUENviiieeiieeeeteeeette et eetee e e ctre e e e tee e e e aae e s e abaaeeesasaeeeesssasasennsasassnsenns 50
Figure 17: Continuous Virtual Sensor — Handle_Sensor_Datac.ceeeeciiieieiiiiieeiiieeccctee s eesvee e e svee e e s eaee e s e svae e s s veeas 51
Figure 18: Continuous Virtual Sensor — Virtual SENSOr DESCIIPLOL......ciicciiiiieiieecccte et se e e sre e e e eee e e e svaee e s aaeas 52
Figure 19: ON-Change ViIMUAl SENSOF........uiiiieiiiiieeiteeeeiteeeeitteeeectteeesstee e e s bteeesssaaeeesssasesssssaasassssaasssssssesesssssaesasssesesssnsenns 53
Figure 20: ONE-Shot VIHUAl SENSOT.........uuiiiiiiieeieeeciitieee e ceeeeitrreeeeeeeeeerareeeeeeeesesssssaseeseesessasssssssesesssssssssssssessessssssssssseeesnnnes 54
Figure 21: Hooks Called DUINNG INItI@liZAtIONcccceciiiieeeeee ettt ceecccrreee e e e eeecetrrreeeeeeee e ensraeeeeeeessensssaaesesensssnnsssnsesessnnes 56
Figure 22: Definition Of HOOK FUNCHON.........iii ittt ettt eecreeeee e e e eesabeeeeesaeeeessneseeesssaseeesssssesensssaeeenssssesennnses 56
FIZUIE 23: HOOK PrIOMTIES ciiieeeeueiiiieieeieeeciiiitte e e e eeeecitttteeeeeseeeetttaeeeeeeeeesssssasaeeaesessnsssesaesssesesssssesassesasassssssssesssssessssssnasesesannns 57
FigUIe 24: HOOK EXAMPIE T ..eeeeeeiiiieeee ettt ettt e e e e e ettt e e e e e s et e teeeeeeeese e sssaaaaeeaeseasnssbasaaesaasaansssseaaaessssassssssaneasesannns 57
FigUIe 25: HOOK EXAMPIE 2 ...ttt ettt et ee ettt e e e e e s ee e ta et e e e e e e ss e ssaaaaaaeaesesnnssbaaaaaesasaanssssaaaaesassansssssaaeasesnnnns 58
Figure 26: CMaKeListS.tXt EXAMPIEceeceeiiieeetieeeeteeeette ettt ee e e e et e e e e et e e e e bae e s e saeesessaaeeessaaaeessaaasesnsasasennsens 58
Figure 27: Parameter Page Read and Write Callback RegIStrationoececuiiiieiiiieecieeeccee ettt 60
Figure 28: Parameter REAU CallDACK..........uiieeuiiiieeiiieeeccte ettt ee et eectee e e et e e e et e e e e sae e s e sbaaeeessaseaensasasessasasensasassnnsens 60
Figure 29: Parameter WItE CallDAcCK..........uiieeiiiiiiieeeeee ettt stt e e e s ste e e e s te e e s s aa e e e s asaeesssnsae e e s ssaeessnsasessnnsenns 61
Figure 30. Setting the WatChdOg LiMit.........cieciiiiieiieeeciteeeecte ettt eeree e s re e e s str e e e s e e e s s raa e e s s nsaeesssnsaeessssaaasssnsasassnnsens 62
FIgUIE 37 : BACKITACE ULIlItYeeevvieeieeieeeeiiitieeeee ettt e e e ceeeetreeeeeeeee e tsreeeeeeeeessnsssssaaesaeeesnnsssssseseesessssssseseseenssnssssnsseeesannns 64
FigUre 32 : StaCK USQEE REPOM.....cuiiiiieeeiiiiieieeeeeeeciiitteeeeeeeeeeittteeeseeeeeeessssaaseseessssssssssssseesessasssssssessesesssssssssesesnssnsssssssesesnnnns 65

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 6|71

List of Tables

Table 1: SDK DIrCIOIY SITUCIUIE. ... eeeeeiiiieeee ettt ettt ee e e e e e s ctrre e e e e s e e e e sbseaeeeesesessssssasaeeesesasssesaaeeasssssnsssenaaeeessesnssrns 13
Table 2: FIrMWare COMPONENTS....cciiicciiiiieeeeieeeeiitteeeeeeeeeetrtreeeeeeesesssreseeseasseassssstssesssesaasssssssseessssesssssssessssssssnsssessssssssesnnssens 14
Table 3: Board Configuration — GIODAl VAIUESooieeeiiiieiieeetee ettt ettt et e e te e e e et e e e e e staee s s saae e e staeeeensaaesennsanaaann 17
Table 4: Board Configuration — PhySiCal DIVEI VAIUESccccuuiiieeiiieecciieeeecitieeeetee e e ttee e e e ateeeeesstaeesesaaessessaesensssaesennssseannn 18
Table 5: Board Configuration — Virtual DIVEN VAIUES.........cceccviiiieciieeccctte ettt eeectee e e tee e e e atee e e e sstae e e saaeesessassesnsaaesennssseaans 18
Table 6: RAM Version Setting in SDK Compilation RESUIL........cocuuiiiiieiieieeeeeeeeeete et eesree e rr e e e vrr e s e s seae e e s anaeeens 19
Table 7: Main CMaKeE Fil@ PAramEtErSccccuiiiiieiiieieeciieeeecteeeeeitteeee sttt e e eestteeeessseeeesssaeeeesssssesesssaesasssssessssseessssssessnssseesans 20
Table 8: Driver DIr€CIOrY CONENTc...ueiiiveeieeeeecccitteeeeeeeeeeitreeeeeeeeeetareeeeeeeeesssssssseseesessssssssssseessssssssssssseessssssssssssseesssenssssns 30
Table 9: SensorDesCriptor — SENSOIINTO SITUCIUIEccevvieeeereeecereee et ettt e e rtreeeeertreeeeeaseeeeesssaseeessaseeessseseeenssasesenneeenen 34
Table 10: SensorDesCriptor — SENSOITYPE SITUCIUIE c.ccceeeeiiiieeee ettt ee e ceeeecrtee e e e e e eeeerrreeeeeesessessssaseeesesssssssseseseesssnnnsens 35
Table 11: SensorDescriptor — PhySiCal DEVICE STIUCTUIEuiiiiiiiececiiieeeeeeeeeccttre e e e ceeectree e e e e s e eeearereeeeesseesssseneaeseeseennssens 36
Table 12: [12C DEVICE (I2C _DEVICE 1) coecuriieieeiiieeeecieeeeectteeee ittt eeeittte e e e stteeeeesteeeeeesseeeeesasaeaessssaeaessaseaesssssaaanssesaaenssasesnnsssaennn 36
Table 13: SPI Master Device (SPIM _DEVICE 1) .c..uuiieieeiieeeeiieeeeeitte ettt e e cttteeeecateeeeestreeeeesseeesesssasesessseasesssaasenssasasennssaenen 36
Table 14: SensorDescriptor — Physical Sensor Function Pointer FIeldscocciiiieeiiiieeciiieeeectte e eree e 37
Table 15: SensorDescriptor — Physical SENsSor Data FIeldScccuuiiiieiiiiieeiieeccciee ettt e e sree e cte e e e sare e e e e saae e s aaeeeean 37
TabIE 16: TrIGEEI SOUICE TIMET c...eeeiieieciieeeeeitieeeeiteeeeeitteeeeitteeeeestaeeeestaaaaassssaeaansssssaasssssaassssseseanssassaassssesasssssssansssaesenssseennn 39
Table 17: SensorDescriptor — Virtual Sensor FUNCEiON POINtEr FIEIASveeiieeeeiiiiiiiiee ettt ceeerrreee e e eeecrreeeee e e e e e nnnees 39
Table 18: SensorDescriptor — Virtual SENSOr DAta FIIASuvvviiiiieeiiiiiieee ettt ceeerirreeeeeeeeeeeasereeeeeeeeesssssssesesesssssnnsens 39
Table 19: SENSOrPOWEIMOAE DEFINILION ...cciceeiiieieeiieeeceeeecce ettt e e e re e e e re e e e s rbae e e e sbaesesssaaeesssssaesansssnesansssaeaans 40
Table 20: set_power_mode Driver REQUIFEIMENEScccccuuiiiieiiieieeiiieeeeiiteseesreeeessreesesssreesesssseessssssaesssssssesssssseesssssssesssssssessns 41
Table 21: Summary of Sensor Data HandliNg FUNCHONS..........viiieiiieeeeiieececree ettt et eertreeeeesrreeeeesrneeeeesreseeenssasesennnneenes 42
Table 22: SUMMATIY SPECIAl SENSOI CASES ..ceiieeiciirrreeeeeeeeeeiitrteeeeeeeeeeirrreeeeeeesessssrsseeseesssssssssesessesssssssssssesssessssssssssesesssssssssns 45
Table 23: SUPPOMEA HOOK TYPES ittt ettt s ettt te e e e e e e trere e e e s e e e e sbaeaeaeeseesesssssaaasassasasssesaaesesssssnsssensasssesnenssrns 54
TADIE 24: PAramELErS...cccci i itiieeeee ettt e e ccrttee e e e e e ee e etrereeeeeeese s sareaeaseaeseasssataaaessasaassssaaaaaessesansssesaaeessesannssseraaeeeesannssrns 59
Table 25: Available GPIO Registers for Communication With HOSE..........coieeiiiieeiiieceeee e e e e e 61
Table 26: ENADIEA RTOS APIS ...ttt ettt e ettt e s e tte e e e e ttae e e e aaseeeensaaeeeasssaaaaasssaeaaanstaseaassasseaasssasaannssassannssseennn 66
Table 27: DiSAbled RTOS APIS ...ttt ettt e e eteeeeectteeseesttee e e e stteeeeesssaeeesssaeaaasssasaassssseaasnssasesassssasansstassansssassennsssaanns 67

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 717

General description

This document describes the process of developing firmware for the BHA260, BHI260, BHI360 and BHI380 devices
(hereafter referred to as the “BHy2xx/BHI3xx”).

The BHy2xx/BHI3xx is a family of ultra-low-power smart hubs consisting of Bosch Sensortec’s new programmable 32-bit
microcontroller (Fuser2), state-of-the-art motion sensors, and a powerful software framework with pre-installed sensor fusion
and other sensor processing software in a small LGA package.

The firmware to run on the Fuser2 microcontroller is divided into a ROM image built into the BHy2xx/BHI3xx and RAM/Flash
firmware images which can be used to customize firmware and provide patches for the ROM image.

The ROM firmware includes a bootloader, standard C, math, and security libraries, the host interface and support for basic
host commands, and low -level hardware drivers.

When booting, the BHy2xx/BHI3xx bootloader loads a RAM/Flash image that defines the customization of the
BHy2xx/BHI3xx and may contain additional algorithms defined by the user or Bosch Sensortec. It is possible to use the
BHy2xx/BHI3xx device even without developing new firmware, since binary firmware files are provided on the Bosch
Sensortec website, which provide broad functionality with both internal and external sensors, e.g., implementing a versatile
ready-to-go Android™ sensor hub.

The purpose of this document is to describe how additional algorithms can be compiled into the firmware and how the
firmware can be tailored to the application needs.

Figure 1 describes the internal architecture of the firmware stack.

Optional application software

Event driven software framework ROM Software libs

& middleware
(BSX4, libc, math,

OpenRTOS Crypto: SHA256, ECDSA,

(including Android™ CTS verified virtual sensor stack)

(multithreading kernel) AES256)

Hardware abstraction layer
Bare metal

(including drivers for peripherals and integrated sensors)

Figure 1: Structure of the BHy2xx/BHI3xx Software Framework

In the default configuration, the firmware makes use of the event-driven software framework, and the customization can be
done by adding or removing drivers toffrom the event-driven system, or just configuring the drivers. This provides a high
degree of flexibility, and most use cases can be handled with this level of configuration.

In addition to this document, Bosch Sensortec provides several documents which contain information on applications that
are either directly or indirectly linked to firmware programming:

e BHA260/BHI260/BHI360/BHI380 Datasheet: Provides technical details on the BHy2xx/BHI3xx devices.

e BHA260/BHI260/BHI360 and BHI380 SDK Quick Start Guide: Provides a simple and fast way to set up a firmware
programming environment and get started with programming.

e BHI360/BHI260AB-BHA260AB Evaluation Setup Guide: Contains information on how to evaluate BHy2xx/BHI3xx
hardware using dedicated software on a host computer. This includes host channel communication with the
BHy2xx/BHI3xx devices.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

O I T
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 8|71

e BHI260-BHA260 In-Circuit Debugging Guide: Provides methods for in-circuit debugging using the JTAG protocol in
combination with a debugging environment.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 9|71

1 Prerequisites and installation

The Software Development Kit (SDK) is designed for use on either a 64-bit Windows system or a 64-bit Linux system. Most
testing has been done with Red Hat Enterprise Linux (7.4 or higher) and Ubuntu (16.04 LTS); however, no major issues are
expected with other Windows or Linux distributions.

The following software packages are required for firmware development:
e BHy2xx/BHI3xx SDK release package from Bosch Sensortec
e Either of the ARC®' compiler toolchains
o Synopsys MetaWare Compiler and Debugger Suite, revision 2020.03 or higher
o ARC® GCC, revision 2021.09 or higher

In general, the MetaWare toolchain is recommended due to increased testing and improved code size and
execution speed.

Linux only: (utilities already included in binary format for Windows system)
e CMake revision 3.5 or higher
e Native C++ compiler and standard C library of the development system
e Ninja revision 1.3.4 or higher (optional)
Note that the toolchain versions provided in this document are those the SDK has been tested with. Newer versions of the

toolchains can be installed but are not guaranteed to work as intended.

1.1 Compiler toolchains

The developer has a choice to use either the Synopsys MetaWare toolchain or the GNU GCC toolchain. MetaWare has
shown to result in high code density and execution performance, so in general, it is the recommended choice. The GCC
toolchain has the advantage of free availability without license costs incurred.

1.1.1 Obtaining and installing the Synopsys MetaWare C compiler

The latest version of the MetaWare Development Toolkit can be downloaded from the Synopsys website, see Reference 3,
however, to obtain an older version of MetaWare, Synopsys must be contacted directly. To do so, please open a support
case with Synopsys.

A valid license shall be obtained from Synopsys prior to installation.
1.1.1.1 Linux

The Synopsys MetaWare toolchain requires a 64-bit Linux operating system with 6 GB of free disk space to install.

Installation procedure:
1. Ensure the installer is executable.

chmod +w ./mw _devkit arc M 2020 03 linux x64 install.bin
2. Run the installer.

./mw_devkit arc M 2020 03 linux x64 install.bin -i console
3. Press ENTER to continue.
4. Read the EULA.
5. Accept the EULA.

T ARC® is a registered trademark of Synopsys.Inc.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 10| 71

6. Read the notice about multiple installations.
7. Select the installation path (ENTER for default).

It is recommended to install it to the location /opt/synopsys/metaware/<version>/ if this is available to all users. For
single-user installs, ~/metaware/<version>/ can be selected instead.

8. Verify installation options.
9. Perform the installation.
10. Read the licensing note and continue. Provide the license file or link to license server when requested.

The installation is now complete.

Setting environment variables:
By default, the MetaWare installer sets the following variables by modifying the user start-up script:

METAWARE ROOT: <install path>/MetaWare

NSIM HOME: <install path>/nSIM/nSIM

LD LIBRARY PATH: <install path>/Metaware/arc/bin

PATH: <install path>/arc/bin;<install path>/MetaWare/ide

These variables are set by modifying the user start-up script. They can be modified as needed. For a multi-user install,
special care needs to be taken to ensure that all users have the appropriate environment variables set.

There are three primary methods for installing and activating the MetaWare license:
1. The license file can be installed to <install_path>/license/arc.lic.
2. The SNPSLMD LICENSE FILE environment variable can be set to point to the local license file.

3. The sNPSLMD LICENSE FILE environment variable can be setup to point to the license server by setting it to
<port>@<server>.

1.1.1.2 Windows

Installation procedure:
1. Run the installer by double-clicking the .exe file.
Read and accept the license agreement.

Select the install directory.

2

3

4. Verify installation options.

5. Perform the installation.

6. Read the licensing note and continue. Provide the license file or the link to the license server when requested.
7. Make sure that the environment variable SNPSLMD_LICENSE_FILE points to your MetaWare license file.

The installation is now complete.

1.1.2 Obtaining and installing the GNU C compiler for BHy2xx/BHI3xx

The latest version (as well as older versions) of the GNU Toolchain can be downloaded from the website given in
Reference 4. A specific download package can be selected by using the drop-down Assets in a specific release section,
see Figure 2.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

—_

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

v Assets 17

ﬁfﬂarc_gnu_2021.09_ide_linux_install.tar.gz
@arc_gnu_2021.09_ide_macos_install.tar.gz
@arc_gnu_2021.09_ide_plugins.zip
@arc_gnu_2021.09_ide_win_insta|l.e>ce
@arc_gnu_2021.DB_prebuiIt_elf32_be_|inux_install.tar.gz
@arc_gnu_2021.DB_prebuiIt_eIf32_be_macos_install.tar.gz
@arc_gnu_2021.09_prebuiIt_eIf32_Ie_Iinu>c_install.tar.gz
@arc_gnu_2021.0B_prebuiIt_elf32_le_macos_install.tar.gz
@arc_gnu_2021.DB_prebuiIt_gIibc_be_archs_linux_install.tar.gz
@arc_gnu_2021.0B_prebuiIt_glibc_le_archs_linux_install.tar.gz
@arc_gnu_2021.DB_prebuiIt_glibc_le_archs_native_install.tar.gz
ﬁfﬂarc_gnu_2021.DB_prebuiIt_uclibc_be_arc?OD_Iinux_install.tar.gz
@arc_gnu_2021.DB_prebuiIt_ucIibc_be_archs_linux_install.tar.gz
@arc_gnu_2021.09_prebui|t_ucIibc_le_arc?DO_Iinux_instaII.tar.gz
@arc_gnu_2021.DB_prebuiIt_ucIibc_le_archs_linux_install.tar.gz
[§]Source code (zip)

[§]Source code (tar.gz)

1.49 GB

1.26 GB

865 KB

341 MB

555 MB

341 MB

527 MB

516 MB

119 MB

118 MB

106 MB

72.5 MB

88.8 MB

71.6 MB

87.8 MB

Figure 2: ARC GNU Toolchain Download

1.1.2.1 Linux

M7

Dec 8, 2021
Dec 9, 2021
Dec 9, 2021
Dec S, 2021
Dec 9, 2021
Dec 8, 2021
Dec S, 2021
Dec 9, 2021
Dec S, 2021
Dec 9, 2021
Dec 9, 2021
Dec 8, 2021
Dec 8, 2021
Dec 8, 2021
Dec 8, 2021
Dec 9, 2021

Dec 8, 2021

The GNU toolchain requires a 64-bit Linux operating system. . The package with support for elf32 little-endian hosts is

required. For the 2021.09 release, the correct version to install is the

arc_gnu 2021.09 prebuilt elf32 le linux install.tar.gz package.

Note:

The arc gnu 2021.09 ide linux install.tar.gz file can be used instead if the eclipse ide is desired.

1.

Extract the installation package.

tar -xvf arc gnu 2021.09 prebuilt elf32 le linux install.tar.gz

Move the extracted folder to the installation path. For multi-user installs /opt/arc_gnu/<version> is a good path, while

single-user installs can use ~/arc_gnu/<version>.

mkdir -p ~/arc gnu/

mv arc _gnu 2021.09 prebuilt elf32 le linux install ~/arc gnu/2021.09

Update the PATH variable to include the <install_path>/bin/ directory. This can be done by modifying the shell start-up

script as appropriate.

1.1.2.2 Windows

The latest version of the GNU Toolchain can be downloaded from the website given in Reference 4. For the 2018.09
release, the correct version to install is the arc_gnu 2018.09 ide win install.exe package (see Figure 2).

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 12|71

Simply double-click the installer and follow the instructions in order to install the compiler toolchain.

1.2 Software Development Kit for BHy2xx/BHI3xx

1.21 Linux

The SDK is a shell archive that can be extracted under Linux. To install the SDK, execute the following steps:
1. Obtain the SDK shell archive for Linux.
2. Make it executable.

For BHI260:

chmod a+x BHI260 SDK V1.0.0 Install.sh

For BHI360:

chmod a+x BHI360 SDK V1.0.0 Install.sh

3. Execute the shell script.
For BHI260:
./BHI260 SDK V1.0.0 Install.sh
For BHI360:

./BHI360 SDK V1.0.0 Install.sh

4. Read and accept the license.
5. Select the installation directory.

Now the SDK tree is extracted to the selected directory.

1.2.2 Windows

To install the SDK, execute the following steps:

1. Obtain the SDK executable file for Windows.

2. For BHI260: Double-click BHI260_SDK _Installer_V1.0.0.exe.
3. For BHI360: Double-click BHI360_SDK_Installer_V1.0.0.exe.
4. Read and accept the license agreement, click Next.

5. Choose the install directory.

Now the SDK tree is extracted to the selected directory.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 13|71

2 SDK structure and features
2.1 SDK and firmware structure

2.1.1 Overview of SDK structure

The SDK package contains all the necessary files for custom code development and linking. Typical custom code
development will utilize the drivers_custom subdirectory (see Table 1 below).

Table 1: SDK Directory Structure

Directory which contains source code for applications that run outside of the

apps sensor framework
boards Configuration files for supported development boards and sensors
cmake CMake files used to build the SDK
Source code for initialization code and reference header files, main CMake
common . Lo
global configuration file
docs Information regarding application notes
drivers Source code and binary code of sensor drivers, custom drivers can be placed

in this directory

Driver templates for custom drivers. Custom driver code should be placed in

drivers_custom this directory

gdb Support files for using gdb

kernel Binaries and objects files of the firmware kernel image

libs Linkable binary image and header files for APl libraries

user Entry code for user-mode firmware, source code for custom user-mode RAM
patches

utils Executable image manipulation utilities, command line interface

win64 Binaries of utilities for Windows system.

build.sh Shell script used to set up the build directory and build the firmware on Linux

build.bat Batch script used to set up build directory and build the firmware on Windows

README.txt Hints on requirements and instructions for building firmware

release Created during build process, will contain final binary firmware files and elf files

build Created during build process, will contain intermediate build artifacts, used

memory resources for different board configurations etc.

2.1.2 Overview of firmware structure

Firmware images for the BHy2xx/BHI3xx are divided into a ROM image built into the BHy2xx/BHI3xx chip and RAM/Flash
firmware images which can be used to customize firmware and provide patches for the ROM firmware. The ROM firmware
includes the bootloader, SHA256 and ECDSA security libraries, the host interface and support for basic host commands, the
BSX sensor fusion library and low-level hardware drivers.

RAM/Flash firmware images are further divided into two images — a kernel image and a user image, which are described
below.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 14|71

2.1.2.1 Kernel Mode and User Mode RAM Images

RAM/Flash firmware images are divided into two images - kernel image and user image. The kernel image includes the
sensor framework, RTOS libraries, the sensor fusion library, support for additional host commands, and any necessary
ROM patches. The user image includes all physical and virtual drivers. Table 2 describes various firmware components
and their operating modes.

Kernel and user operating modes are used to provide privileged and restricted access to certain privileged instructions,
registers, and memory locations. Kernel mode has the highest level of privilege and allows unrestricted access to privileged
resources, while user mode has the lowest level of privilege and allows only restricted access to privileged resources. Any
attempt to access privileged resources will result in a privilege violation exception.

Table 2: Firmware Components

Hooks Kernel or user payload Kernel
Commands Kernel payload Interrupt/Host task Kernel
Param IO Kernel payload Interrupt Kernel
Physical Drivers User payload l;;elz(rrupt/Sensor Framework Kernel
Virtual Drivers User payload Virtual Tasks User

2.1.3 Available memory resources for custom Code

Figure 3 shows the breakdown of memory resources available for custom programing using program and data RAM. There
is a total of 256 KB available RAM. One bank of 16 KB is dedicated program RAM and one bank of 16 KB is dedicated
data RAM. The remaining 7 — 32 KB banks of RAM can be divided as needed between program and data RAM. During
initialization, the firmware determines how many banks of program and data RAM are needed and allocates and powers on
only what is needed.

To optimize both size and speed, custom code should utilize available API functions. Available API functions abstract away
access to hardware and are optimized for speed.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 15|71

Fuser2 memory resources

RAM
16 KB
240 KB

Output FIFO and
User-Mode Data

RAM
16 KB
240 KB

User-Mode
RAM firmware

Figure 3: Available Memory Resources for Custom Code Development (White) and Reserved Memory (Blue)
2.1.4 Memory Configuration and Memory Map

The memory space addressable by the ARC EM4 CPU in the Fuser2 MCU has a total size of 16 Mbytes. It is divided
equally into 16 regions, each with a size of 1 MByte. The following types of memories are allocated in the memory map:
e On-chip ROM
e On-chip SRAM
Further, the peripheral IO is also allocated in the memory map (memory-mapped |0). The details of the memory map
are shown in Figure 18 below and described in the following sections.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 16 | 71
ICCM
100000
Program ROM (144 kB)
12 aFFC
: 13—3%_23 Program RAM [16kB)
MEM (16 MB) 17 z000
I 00_0000 Fegion 0 - - Additional Program RARK) .
SYSIEM S$pACE grgwRc resenved) (m*32 kB for ;f;”:h:l'omm
cr 10 0000 . m = 7-n without Flash e
ICCH 1FFFFC Region 1 m = 6 with Flash) then reserved
/" 20 oooo : 12 8000 + m*3000 - 4
[ZFFFFC LT 712 8000 + w*E000
I 500000 : B {resenved)
[SFFFEC Smrand “AF FFEC
I 40 0000 ; -
[4F FFFC s 20_0000
I 50 0000 ; " optional-
ysem | orpeee| Regons External Flash e e
space 2 200[Regons (up to 8MB) then reserved
: 70 0000 oo 9F_FFFC
7E_FFFC
[B80_0000 R DCCM
[BF_FFEC sgon 200000 I
' 50_0000 Region 9 A0 SFFC
‘. W SE_EFEC i A0_2000 DataRAM (16kB)
oecy RO 0000 ; A0 TEFC
DCCK AF FEFC Region 10 MCSD oo
g BO 000D ; g8 Additional Data R.AM optional:
| B FFpC| fregon i (32 kB for i not sllocated,
| CO_oooa Region 12 R n=10, ..., 7 without Flash then reserved
system _/ CE_FFFC (resenved)) n=0, ..., 6 with Flash) = decm_num
space 000000 Region 13 A0 S000 + n*2000 - 4
| OF_FEFC {resenved) A0 _S000. +. n*S000
, -
EO0 0000 FRegion 14 . {resernved)
_ EEFEEC [resened) : LF FFEC
) FO_0000 ; :
perpheral space pFFFFC Region 13 BO 0000)
— ED:DSFE: Cache Directory (1 kB)
BO_0400
{reserved)
BF FFFC
pemanently allocated
FO_0000
pemnanently reserved Peripheral Space
configurably allocated or resenved FE_FFFC,

Figure 4: Fuser2 memory map

2.1.4.1 On-Chip Memory

The ARC EM4 CPU in the Fuser2 MCU allocates separate memory areas for program code fetch and data load/store
due to the nature of its Harvard architecture. The on-chip RAM and ROM are closely coupled to the CPU, allowing for the
maximum access speed. These closely coupled memory areas are called ICCM (Instruction Closely Coupled Memory for
instruction code) and DCCM (Data Closely Coupled Memory for data). The on-chip ROM of 144 KBytes is permanently
allocated to the ICCM area, since its main purpose is code storage. It is mask-programmed by Bosch Sensortec and
contains the boot loader (executed after reset) and various libraries. See Section 6 Integrated Product Software for
more information. The total on-chip RAM of 256 KBytes is laid out on several memory banks and configurable in a very
flexible manner.
Two 16 Kbytes memory banks are permanently enabled and fixed allocated to the ICCM and DCCM area respectively,
to serve the absolute minimum needs of the ARC EM4 CPU for operation.
The remaining 224 KBytes form a pool of 7 RAM banks with a size of 32 KByte each, which can be enabled or disabled
according to the requirements of the firmware, allowing for the optimization of current consumption (see Block diagram
Figure 8 in Section 4.3). Each of the configurable 32 Kbytes memory banks can have one of the following states:

o Powered-off

e Allocated to the ICCM area

e Allocated to the DCCM area
The allocation of configurable memory banks is performed by the bootloader depending on the requirements of the
firmware. It is ensured that only the minimum of required RAM banks for instructions and data are allocated and
powered on automatically without the need for the programmer to take care of this. The amount of allocated RAM banks
for ICCM and DCCM are reported separately during compilation of the firmware.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 17|71

2.1.4.2 Peripheral Space

The Fuser2 uses memory-mapped IO to control its peripherals. Therefore, all registers controlling the hardware are
mapped into the peripheral space of the memory map. However, the programmer does not typically have to modify
these registers, since API functions are available for all peripheral 10 related operations.

2.2 Firmware configuration (using board configuration file)

Board configuration files are used to specify configuration data for different firmware builds. A board configuration file includes
a global configuration section, a physical driver configuration section and a virtual driver configuration section. Comments
begin with a hash mark (#) and go to the end of the current line.

Board configuration files can be found in the directory boards in the SDK root. The SDK contains multiple board configuration
files. The main CMake file, common/config.7189_di03_rtos_bhi260.cmake for BHI260, or for BHI360
common/config.7189 _di03_rtos_bhi360.cmake, controls which board configurations are compiled during the firmware build
process (see section 2.3.2).

2.2.1 Global configuration

The global configuration section specifies a number of hardware configurations. Each line in the global configuration section
begins with the option name and is followed by the value(s) to be assigned to that option. The option name and value(s) are
listed as comma separated values.

Table 3: Board Configuration — Global Values

e

stuffelf stuffelf version used to write configuration file

irg Host IRQ pin number

12 values specifying the GPIO event configuration (events 1-11). Each value specifies
evcfg whether the respective GPIO event interrupt gets its source per configuration 1 (0) or
configuration 2 (1). The first value (event 0) is reserved and should be set to 0.

Up to 28 values specifying the GPIO pull configuration, off = pull is disabled, on = pull is

pull enabled. If no values are indicated, the default value will be off.
o Up to 25 values specifying the GPIO value configuration, low = active low, high = active high,
gp hiz = high impedance. If no values are indicated, the default value will be hiz.
Sensor Interface selection, selects the protocol for SIFO and SIF1. SIF2 is always connected
to 12C master 1.
li_eig sif_cfg: SIFO SIF1 SIF2
0: SPImaster 0 SPImaster1 12C master 1
1: SPImaster 0 12C master 0 12C master 1
2: 12C master 0 SPI master 1 12C master 1
hif_disable Host interface configuration. 0 = enabled, 1 = disabled
rom_name Custom ROM firmware image name
hw Target hardware name
FIFO allocation percentage, wake-up FIFO is allocated 50% plus half of this value, non-
fifo wake-up FIFO is allocated remaining. Valid values range from -100 (100% non-wake-up) to
+100 (100% wake-up).
wordsreq Number of words required by the FIFO
turbo Run in turbo mode
rom Expected ROM version (unused)
version Custom user firmware version
build_type Firmware build type, can be set to RAM, Flash, or both

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 18| 71

Copuon e

config_list BSX specification list file

config_spec BSX specification file

ram_patches
(optional)

lib

(optional)

Names of ram patches (hooks) that shall be included for this board

Names of libraries that shall be included for this board

2.2.2 Physical drivers

The physical driver section includes one line for each physical driver that should be included in the firmware image. The
configuration for each physical driver is specified in a comma separated list (one line per included driver) and includes the
following values. No option names are included in the physical driver configuration list.

Table 4: Board Configuration — Physical Driver values

Driver ID Driver ID of the physical driver to be included. It must match the driver ID
indicated in the CMakelLists.txt file.

Sensor Bus Interface The value must be one of none, i2c0, i2c1, spiO0, or spil.

If 12C, this is a 7-bit slave address (MSB = 0). If SPI, this is the GPIO pin

Sensor Bus Address .
for chip select.

GPIO Pin GPIO IRQ pin number, specify a dash (-) if a GPIO IRQ pin does not exist
Calibration Matrix 9 floating point values indicating the calibration matrix used for the sensor
Calibration Offset 3 floating point values indicating the calibration offset for the sensor

Max rate Override the maximum rate for the physical driver

Range Set the dynamic range for the physical driver

For example, the BHI360 Accel and gyro driver might be configured with this line in the physical driver configuration list.

26,spi0, 25,2, 0, 1, O0,-1, O, O, O, O, 1, O, O, O, 800.000000, O
25,spi0,25,-, 0, 1, 0,-1, 0O, O, O, O, 1, O, O, O, 800.000000, O

Figure 5: Example Physical Driver Configuration
2.2.3 Virtual drivers

The virtual driver section includes one line for each virtual driver that should be included in the firmware image. The
configuration for each virtual driver is specified in a comma separated list (one line per included driver) and includes the
following values. No option names are included in the virtual driver configuration list.

Table 5: Board Configuration — Virtual Driver values

Driver ID Driver ID of the virtual driver to be included. It must match the driver ID
indicated in the CMakelLists.txt file.

Max rate Override the maximum rate for the virtual driver

For example, the virtual accel raw driver might be configured with this line in the virtual driver configuration list.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 19|71

203, 400.000000 #VirtBSXAccelUncal: accel raw data depends on VirtBSX.
244, 400.000000 #VirtBSXGyroUncal: gyro raw data depends on VirtBSX.

Figure 6: Example Virtual Driver Configuration

2.3 Build system and build targets

2.3.1 Compiling firmware

This section describes the firmware compilation process using the SDK. This compilation process is common for custom
hooks and custom driver development. Note that compilation is a multi-step process — first, the source code is compiled and
linked into $SDK/user/<board>.elf file. Second, the proper rotation matrixes and pin settings are applied using stuffelf
utility. Finally the *.elf file is converted to the binary firmware format. The final firmware image is named <board>.fw and
can be found in the $SDK/release/fw directory ($SDK/release/gccfw for GCC compilation).

2.3.1.1 Setting environment for compilation

To identify the version of firmware running on the device, the USER_VERSION field in the Config Data Structure is populated
during compilation. This value is readable from the User Version register during normal operation (see section 13 of
BHI360/BHI260AB/BHA260AB Datasheet, Reference 1 ,Reference 2 and Reference 5). The USER VERSION field is set as
shown in Table 6.

Table 6: RAM Version Setting in SDK Compilation Result

SDK checked from git RAM Version Setting

Yes Number of git commits in the current git repository (git rev-list HEAD)

No Value from $SDK/config.cmake REVISION

2.3.1.2 Firmware generation for supported boards

A simplified compilation flow is available for standard boards. The build system utilizes CMake and can generate Ninja build
files (default) or standard UNIX makefiles (if Ninja is not installed). There are build scripts (build.sh (Linux) and build.bat
(Windows)) in the $SDK directory that automates the initial build. To build standard firmware for all pre-defined boards without
custom hooks or drivers, execute the following steps.

Linux:

cd $SDK
./build.sh

Windows:
cd $SDK
build.bat

The resulting binary firmware files are in the $SDK/build/user directory. As a final step of the build process, a condensed
version of the final artifacts is copied to the $SDK/release directory. The generated firmware images are in $SDK/release/fw
($SDK/release/gccfw for GCC compilation).

Individual board firmware can be built by specifying a <board-name> as an argument of the build script, where <board-
name> is the name of a board config file minus the ‘.cfg’ extension.

Linux:

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 20| 71

cd $SDK
./build.sh <board-name>

Windows:
cd $SDK
build.bat <board-name>

To create a new board file, copy an existing reference board file in the $SDK/boards directory to a new board file. Edit
$SDK/common/config.<$SDK_TYPE>.cmake to add the name of the board file to the BOARDS variable. Be sure to choose a

reference board file according to the sensors you need, editing it to use the correct GPIO pins, sensor drivers, and other
configuration.

2.3.2 Configuring the firmware build (using the main CMake file)

The firmware build process can be customized by modifying the main CMake file, which is located in
$SDK/common/config.<$SDK_TYPE>.cmake. Table 7 shows the main configurable parameters that need to be modified
when developing custom firmware. In the set call, each added value must be written to a new line.

Table 7: Main CMake File Parameters

Parameter [Note

Contain the names of boards for which a firmware file shall be built. The
name must match the board config file minus the ‘.cfg’ extension.
Contain drivers that are not present as source code, which shall be
DRIVERS NO_ SOURCE included in the firmware. The name must match the driver folder and *.c
name.

Contain drivers that are present as source code, which shall be included
ENABLED DRIVERS in the firmware. The name must match the matching driver folder and *.c
name.
Need to contain the names of the *.c files (located in
$SDK/user/RamPatches) that contain hooks which shall be implemented.

BOARDS

RAM PATCHES

2.3.3 Selecting the toolchain

The firmware build process automatically searches for installed compiler toolchains (GCC and/or MetaWare). In case both
are found, MetaWare is chosen as the compiler.

If the build process shall use GCC in any cases, the build script can be called as follows:
Linux:

cd $SDK
./build.sh USE GCC

Windows:
cd $SDK

build.bat USE GCC

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

O I T
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 21| 71

3 BHy2xx/BHI3xx driver architecture

This chapter provides information about how sensor data is handled on the BHy2xx/BHI3xx device in general. Furthermore,
it explains how additional sensors and custom algorithms working on physical or virtual data can be integrated into the sensor
framework.

In general, all functionality related to sensors and sensor data is handled by the sensor framework. This framework handles
priorities among implemented drivers and organizes the general flow of data. The sensor framework is the entry point to the
BHy2xx/BHI3xx custom software development.

The BSX sensor fusion library gets physical sensor data as input and provides calibrated, combined, and raw data, which is
either used as direct output data or as a data source for different algorithms, including custom algorithms. Algorithms that
use BSX output as an input can be implemented in virtual drivers.

In general, the BSX sensor fusion library provides three output gates that are either used by algorithms or for sending sensor

data directly to FIFO: wake-up, non-wake-up and custom output gates.

3.1 General flow of data

Figure 6 provides an overview of the structure and dataflow of the BHy2xx/BHI3xx device.

Phys. Drv. ACC

Virtual
Driver
BSX4

Phys. Drv. GYR

Sensor Phys. Drv.
Fusion A

Phys. Drv.
Baro

Custom

Algorithm Data Source Virtual

Virtual Drivers Drivers EUSER2 BH|3XX
BHI2xx

Figure 7: BHy2xx/BHI3xx Driver Architecture

Physical sensor data coming from internal or external sensors is accessed by one physical driver for each physical sensor.
For a predefined set of sensors (accelerometer, magnetometer, and gyroscope), the BSX fusion library uses the output of
the physical driver and fuses this data. The BSX provides the processed data to virtual drivers, which are then used to
compute additional algorithms or directly transfer the data to the FIFO. The sensor framework handles the transfer of data to
either the non-wake-up FIFO or the wake-up FIFO, which is accessible from the host side. For more information on the FIFO
concept, see Reference 1, Reference 2, and Reference 5.

The BSX fusion library can also output raw data from the physical drivers to custom output gates, which can then be
manipulated by custom algorithms. To access this data, a data source driver, which provides an interface to the BSX output
data via custom output gates, must be created. This data source driver can then be used as an input for custom algorithms
implemented in virtual drivers.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 22|71

Physical sensor data can also be accessed without using the BSX fusion library, by creating a pair of custom physical and
virtual drivers. The output of these virtual sensors is then sent to the FIFOs, which is handled by the sensor framework. Note
that only physical sensors, which are not handled by the BSX, can be used for this concept. It is possible to attach multiple
virtual drivers to one physical driver.

A virtual sensor must report sensor data to the host using the reportSensorEvent function. This function sends the output
data to the host interface. If the sensor is explicitly enabled by the host, the output data will be inserted into the proper FIFO
(non-wakeup FIFO and/or wakeup FIFQ). If the sensor framework (via the trigger list/dependency chain) determined that a
virtual sensor needs to be enabled, then the host interface will instead discard the output data.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 23| 71

4 Software development for BHy2xx/BHI3xx using the software framework

BHy2xx/BHI3xx functionality can be enhanced by writing custom sensor drivers that can be tied with particular hardware
connected to the BHy2xx/BHI3xx as physical sensors or based on software as virtual sensors. Only virtual sensors can
output data to the FIFO for transfer to the host, so users creating a non-standard physical sensor driver will need to also
create a matching virtual sensor driver if they intend the data to be sent to the host. This section describes all steps necessary
to write custom drivers.

41 Sensor driver overview

The BHy2xx/BHI3xx supports several sensor driver types that can depend on each other, be triggered by various sources
and executed in different priority levels.

4.1.1 Sensor driver types

There are three basic types of sensor driver: Physical, Virtual and Timer. Note that any virtual driver can have an equivalent
physical driver.

4.1.1.1 Physical sensors

e Providers of sensor data

e Triggered by GPIO interrupts

e Can be periodically polled using a timer if no GPIO is available
¢ Do not output data to the host

4.1.1.2 Virtual sensors

e Consumers of sensor data

e Can be triggered by any sensor driver type (physical, virtual, or timer)
e Can also be programmatically triggered to fork a new thread

¢ Special case of a virtual sensor is a programmatically triggered sensor

4.1.1.3 Timer sensors

e Providers or consumers of sensor data

e Timer-based virtual sensors

e Triggered by internal timer routines, automatically scheduled

e Special case of a timer sensor is a continuously triggered sensor (OHz timer rate); this sensor cannot have any children
and should be Priority M to work properly

e Limited to run below 64 KHz

¢ Allowed to output data to the host with the limitation presented in section 4.1.2

4.1.2 Predefined sensors

The BHy2xx/BHI3xx offers several predefined physical and virtual sensor types in addition to the possibility of adding new
driver types.

4.1.2.1 Physical sensor types

Supported predefined physical sensor types are defined in the following directories:

$SDK/libs/BS X/includes/bsx_physical_sensor_identifier.h and $SDK/libs/Sensorinterface/includes/SensorAPI.h and
include the following types:

e BSX INPUT ID ACCELERATION (1)
e BSX INPUT ID ANGULARRATE (3)
e BSX INPUT ID MAGNETICFIELD (5)

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 24| 71

e BSX_INPUT ID TEMPERATURE GYROSCOPE (7)
e BSX_INPUT ID ANYMOTION (9)
e BSX_INPUT ID PRESSURE (11)
e BSX_INPUT ID POSITION (13)
e BSX INPUT ID HUMIDITY (15)
e BSX INPUT ID TEMPERATURE (17)
e BSX_ INPUT ID GASRESISTOR (19)
e SENSOR_TYPE INPUT STEP_ COUNTER (0x20)
e SENSOR_TYPE INPUT STEP DETECTOR (0x21)
e SENSOR_TYPE INPUT SIGNIFICANT MOTION (0x22)
e SENSOR_TYPE INPUT ANY MOTION (0x23)
e SENSOR _TYPE INPUT EXCAMERA (0x24)
e SENSOR_TYPE INPUT GPS (0x30)
e SENSOR _TYPE INPUT LIGHT (0x31)
e SENSOR_TYPE INPUT PROXIMITY (0x32)

SENSOR_TYPE INPUT EXLED 0x33
e SENSOR_TYPE INPUT ACTIVITY BHI360 0x34
e SENSOR_TYPE INPUT STEP DETECTOR BHI360 0x35
e SENSOR_TYPE INPUT STEP COUNTER BHI360 0x36

()
()
()
()
e SENSOR TYPE INPUT WRIST GESTURE BHI360 (0x38)
()
()
()
()

e SENSOR TYPE INPUT ACTIVITY 0x34
e SENSOR TYPE INPUT NO MOTION 0x37
e SENSOR TYPE INPUT WRIST WAKEUP 0x39
e SENSOR TYPE INPUT BHI360 TEMPERATURE 0x3A

4.1.2.2 Virtual sensor types

Supported predefined virtual sensor types are defined in $SDK/libs/Sensorinterface/includes/SensorAPl.h and
$SDK/libs/BS X/includes/bsx_virtual_sensor_identifier.h. The virtual sensor types in bsx_virtual_sensor_identifier.h are
reserved and not available for custom use when defining new virtual sensors.

Key virtual sensor types are listed below. For an all-inclusive list, see the SDK source files mentioned above.

e SENSOR_TYPE PDR 0x71
e SENSOR_TYPE PDR_LOG 0x77
e SENSOR_TYPE HEAD MISALIGNMENT CALIBRATOR 0x78
e SENSOR_TYPE ORI CORRECTOR 0x79
e SENSOR_TYPE NDOF ORI CORRECTOR 0x7A
e SENSOR_TYPE ORI CORRECTOR EULER 0x7B
e SENSOR_TYPE NDOF ORI CORRECTOR EULER 0x7C
e SENSOR_TYPE BHI360 TEMPERATURE 0x7E

(
(
(
(
(
(
(
(
e SENSOR_TYPE TEMPERATURE (0x80
(
(
(
(
(
(
(
(
(

e SENSOR_TYPE PRESSURE

e SENSOR_TYPE HUMIDITY 0x82
e SENSOR_TYPE GAS 0x83
e SENSOR_TYPE WAKE TEMPERATURE 0x84
e SENSOR_TYPE WAKE PRESSURE 0x85
e SENSOR_TYPE WAKE HUMIDITY 0x86
e SENSOR_TYPE WAKE_GAS 0x87
e SENSOR_TYPE STEP COUNTER 0x88
e SENSOR_TYPE STEP DETECTOR 0x89

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

. U Y y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 25|71

e SENSOR_TYPE SIGNIFICANT MOTION 0x8A
e SENSOR_TYPE WAKE STEP COUNTER 0x8B
e SENSOR_TYPE WAKE STEP DETECTOR 0x8C
e SENSOR_TYPE WAKE SIGNIFICANT MOTION 0x8D
e SENSOR_TYPE ANY MOTION 0x8E
e SENSOR_TYPE WAKE ANY MOTION 0x8F
e SENSOR_TYPE VIRT EXCAMERA 0x90
e SENSOR_TYPE_ GPS 0x91
e SENSOR_TYPE LIGHT 0x92
e SENSOR_TYPE PROXIMITY 0x93

(
(
(
(
(
(
(
(
(
(
e SENSOR_TYPE WAKE LIGHT (0x94
(
(
(
(
(
(
(
(
(
(

)
)
)
)
)
)
)
)
)
)
)
e SENSOR_TYPE WAKE PROXIMITY 0x95)
e SENSOR_TYPE ALTITUDE 0x96)
e SENSOR_TYPE EXLED 0x97)
e SENSOR_TYPE WAKE EXLED 0x98)
e SENSOR_TYPE MULTI TAP 0x99)
e SENSOR_TYPE ACTIVITY 0x9A)
e SENSOR_TYPE DOUBLE_TAP 0x9B)
e SENSOR_TYPE WRIST WEAR WAKEUP 0x9E)
e SENSOR_TYPE WRIST GEST 0x9C)
e SENSOR_TYPE NO_MOTION 0x9F)
e BSX_OUTPUT ID ACCELERATION PASSTHROUGH (2)
e BSX_OUTPUT ID ACCELERATION RAW (6)
e BSX_OUTPUT ID ACCELERATION CORRECTED (8)
e BSX_OUTPUT ID ACCELERATION OFFSET (10)
e BSX_WAKEUP ID ACCELERATION OFFSET (182)
e BSX_WAKEUP ID ACCELERATION CORRECTED (12)
e BSX_WAKEUP ID ACCELERATION RAW (14)
e BSX_CUSTOM ID ACCELERATION CORRECTED (16)
e BSX_CUSTOM ID ACCELERATION RAW (18)
e BSX_OUTPUT ID ANGULARRATE PASSTHROUGH (20)
e BSX_CUSTOM ID ANGULARRATE PASSTHROUGH (22)
e BSX_OUTPUT ID ANGULARRATE RAW (24)
e BSX_OUTPUT ID ANGULARRATE CORRECTED (26)
e BSX_OUTPUT ID ANGULARRATE OFFSET (28)
e BSX_WAKEUP ID ANGULARRATE OFFSET (184)
e BSX WAKEUP ID ANGULARRATE CORRECTED (30)
e BSX WAKEUP ID ANGULARRATE RAW (32)
e BSX CUSTOM ID ANGULARRATE CORRECTED (34)
e BSX_CUSTOM ID ANGULARRATE RAW (36)
e BSX_OUTPUT ID MAGNETICFIELD PASSTHROUGH (38)
e BSX_CUSTOM_ID MAGNETICFIELD PASSTHROUGH (40)
e BSX OUTPUT ID MAGNETICFIELD RAW (42)
e BSX OUTPUT ID MAGNETICFIELD CORRECTED (44)
e BSX_OUTPUT ID MAGNETICFIELD OFFSET (46)
e BSX WAKEUP ID MAGNETICFIELD OFFSET (186)
e BSX WAKEUP ID MAGNETICFIELD CORRECTED (48)
e BSX_WAKEUP ID MAGNETICFIELD RAW (50)

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

. U Y y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 26| 71

e BSX CUSTOM ID MAGNETICFIELD CORRECTED
e BSX_CUSTOM ID MAGNETICFIELD RAW

e BSX_OUTPUT ID GRAVITY

e BSX_WAKEUP ID GRAVITY

e BSX_CUSTOM ID GRAVITY

e BSX_OUTPUT ID LINEARACCELERATION

e BSX WAKEUP ID LINEARACCELERATION

e BSX_CUSTOM ID LINEARACCELERATION

e BSX OUTPUT ID ROTATION

e BSX_WAKEUP ID ROTATION

e BSX_CUSTOM_ID ROTATION

e BSX _OUTPUT ID ROTATION GAME

e BSX_WAKEUP ID ROTATION GAME

e BSX CUSTOM ID ROTATION GAME

e BSX OUTPUT ID ROTATION GEOMAGNETIC
e BSX_WAKEUP ID ROTATION GEOMAGNETIC
e BSX_CUSTOM_ID ROTATION GEOMAGNETIC
e BSX_OUTPUT ID ORIENTATION

e BSX WAKEUP ID ORIENTATION

e BSX CUSTOM ID ORIENTATION

e BSX OUTPUT ID FLIP STATUS

e BSX CUSTOM ID FLIP STATUS

e BSX_OUTPUT ID TILT STATUS

e BSX CUSTOM ID TILT STATUS

W W W W W W W W W 0 J J J J <J oo oo oo O o ;v U ;1 ;m

W o DN O oy N O O oYy NN O ooy DN O 0o O N

N~~~ e~~~ e~~~ e~ o~~~ o~~~ o~~~ e~~~ e~~~ e~~~ e~~~ e~ o~~~ o~~~ e~~~ o~ N~~~ o~ o~

e BSX_OUTPUT ID STEPDETECTOR 100)
e BSX WAKEUP ID STEPDETECTOR 188)
e BSX CUSTOM ID STEPDETECTOR 102)
e BSX OUTPUT ID STEPCOUNTER 104)
e BSX_WAKEUP ID STEPCOUNTER 106)
e BSX_CUSTOM_ID STEPCOUNTER 108)
e BSX_OUTPUT ID SIGNIFICANTMOTION STATUS 110)
e BSX CUSTOM ID SIGNIFICANTMOTION STATUS 112)
e BSX OUTPUT ID WAKE STATUS 114)
e BSX CUSTOM ID WAKE STATUS 116)
e BSX_OUTPUT ID GLANCE STATUS 118)
e BSX_CUSTOM_ID GLANCE STATUS 120)
e BSX_OUTPUT ID PICKUP_ STATUS 122)
e BSX CUSTOM ID PICKUP STATUS 124)
e BSX OUTPUT ID ACTIVITY 126)
e BSX CUSTOM ID ACTIVITY 128)
e BSX OUTPUT ID PROPAGATION 130)
e BSX_OUTPUT ID POSITION STEPS 132)
e BSX _OUTPUT ID WRIST TILT STATUS 134)
e BSX CUSTOM ID WRIST TILT STATUS 136)
e BSX OUTPUT ID DEVICE ORIENTATION 138)
e BSX WAKEUP ID DEVICE ORIENTATION 140)
e BSX CUSTOM ID DEVICE ORIENTATION 142)
e BSX_OUTPUT ID POSE_6DOF 144)

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

BSX_WAKEUP_ID POSE 6DOF
BSX_CUSTOM ID POSE_6DOF
BSX_OUTPUT_ID STATIONARY DETECT
BSX_CUSTOM ID STATIONARY DETECT
BSX OUTPUT ID MOTION DETECT

BSX_ CUSTOM ID MOTION DETECT

BSX OUTPUT_ID STANDBY STATUS
BSX_OUTPUT_ ID ACCELERATION STATUS
BSX_OUTPUT_ID ACCELERATION DYNAMIC
BSX_OUTPUT_ ID ANGULARRATE STATUS
BSX_OUTPUT ID MAGNETICFIELD STATUS
BSX OUTPUT ID ANGULARRATE M4G
BSX_WAKEUP_ ID ANGULARRATE M4G

4.1.2.3 User provided physical sensor types

Custom physical sensor types may be defined in
$SDKj/libs/Sensorinterface/includes/SensorAPI.h.

146
148
150
152
154
156
158
160
162
164
166
168
170

~ e~~~ o~~~ o~~~ o~~~
—_— = = — — = = = = ~— o~ ~— ~—

Y
2717

Custom sensor type values must be defined in the range of NON BSX INPUT ID BEGIN and NON BSX INPUT ID END.
Do not use any already allocated value.

NON BSX INPUT ID BEGIN

NON_BSX_ INPUT ID END

4.1.2.4 User provided virtual sensor types

(0x20)

(0x3F)

Custom virtual sensor types may be defined in $SDK/libs/Sensorinterface/includes/SensorAPI.h. Custom sensor type
values must be defined between the values of SENSOR TYPE CUSTOMER VISIBLE START and
SENSOR_TYPE CUSTOMER VISIBLE END.

SENSOR TYPE CUSTOMER VISIBLE START

SENSOR TYPE CUSTOMER VISIBLE END

4.1.3 Sensor priority level

(0xA0)

(0xBF)

One of the BHy2xx/BHI3xx features is support for multiple sensor priority levels. This guarantees that execution of the
handle sensor data functions of triggered sensors is not mixed — each priority level is executed at a different time. This

feature brings greater flexibility in creating consecutive sensor series.

The base priority levels supported by the BHy2xx/BHI3xx are:

PRIORITY_1

o Default value for physical sensors

o Executed as soon as GPIO interrupt occurs
PRIORITY_2 - PRIORITY_4

o Used by virtual and timer sensors

o Executed when handling sensor data
PRIORITY_M

o Lowest priority level

o Used by virtual and timer sensors

o Executed in the main execution routine

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 28| 71

4.1.4 Sensor trigger chaining

The flow of execution from sensor to sensor is defined by one or more sensor trigger lists in the firmware. Trigger lists are
calculated during the sensor interface initialization and are stored as a linked list using each sensor’s triggerList pointer,
with each physical sensor as the head of a sensor trigger list. The firmware first uses each virtual sensor’s trigger source
sensor type to locate its parent sensor. The virtual sensor is then added to the end of the trigger list which its parent is a
member of. Trigger source and priority level values in virtual sensor descriptors can be used to create complex chains of
sensor triggers. An example of a simple trigger list is shown in Figure 7.

Physical Sensor A Virtual Sensor B Virtual Sensor C Virtual Sensor D Virtual Sensor E
triggerList »| | triggerList »| |triggerList 1 |triggerList »| | triggerList
priority =1 priority =3 priority =2 priority =3 priority =M
enabled =1 enabled =1 enabled =1 enabled =0 enabled =1

parent parent parent parent

Ty 'y)

Figure 8. Example Trigger List

A trigger list may span multiple priority levels; however, the list cannot be re-triggered until all sensor drivers on the list have
finished executing. Alternatively, a secondary trigger list can be programmatically triggered to decouple the retriggering. As
a trigger list example, a simple activity algorithm can be realized according to the following sequence: a timer triggers a virtual
tilt, then the virtual tilt triggers a virtual activity. A more complex sensor dependency is shown in Figure 8. This example
shows the trigger lists parsed by stuffelf at build time. Each sensor is introduced by its priority level in square brackets.

Note that if a triggered sensor cannot serve the request in time, e.g. due to priority or processor load, it is possible that data
necessary for that sensor is overwritten and effectively lost. The data is transferred via a single data object, and no buffering
in the form of a FIFO is applied.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 29| 71

————————— Trigger Lists (physical source) ---------
[1] accel sensor [DriverID 48]
[1] gyro sensor [DriverID 49]
[1] sigmot sensor [DriverID 44]

[6] hw sigmot sensor [DriverID 239]

[6] wakeup hw sigmot sensor [DriverID 181]
[1] stepcnt sensor [DriverID 47]

[6] hw stepcnt sensor [DriverID 238]

[6] wakeup hw stepcnt sensor [DriverID 211]
[1] stepdet sensor [DriverID 46]

[6] hw stepdet sensor [DriverID 237]

[6] wakeup hw stepdet sensor [DriverID 212]

————————— Trigger Lists (virtual: timer) ---------
25Hz Timer
[2] hang detector sensor [DriverID 224]

————————— Trigger Lists (virtual: NO Source) --------—-
unknown

[3] BSX sensor [DriverID 240]
accel corr sensor [DriverID 241]
accel offset sensor [DriverID 209]
accel passthrough sensor [DriverID 205]
accel raw sensor [DriverID 203]
activity sensor [DriverID 235]
game rotvec sensor [DriverID 252]
glance status sensor [DriverID 234]
grav sensor [DriverID 247]
gyro corr sensor [DriverID 243]
gyro offset sensor [DriverID 208]
gyro passthrough sensor [DriverID 207]
gyro raw sensor [DriverID 244]
linaccel sensor [DriverID 246]
pickup status sensor [DriverID 233]
tilt sensor [DriverID 236]
wakeup accel corr sensor [DriverID 192]
wakeup accel raw sensor [DriverID 204]
wakeup game rotvec sensor [DriverID 200]
wake status sensor [DriverID 232]
wakeup grav sensor [DriverID 198]
wakeup gyro corr sensor [DriverID 194]
wakeup gyro raw sensor [DriverID 195]
wakeup linaccel sensor [DriverID 197]

[

DNDNONNDNDNNNDNDENNDNDNDNDNDNDNDNDNDDNDNDDNDDND

Figure 9: Example of Complex Sensor Dependency

Note that while the sensor framework supports any type of physical sensor (e.g., BSX INPUT ID ANYMOTION), only the
BSX INPUT ID MAGNETICFIELD, BSX INPUT ID ACCELERATION and BSX INPUT ID ANGULARRATE physical
sensors are expected by the sensor fusion algorithm and have corresponding output sensors. All other physical sensors
must have a corresponding virtual sensor that consumes the physical data and provides it to the host. This can be seen in
Figure 8, where a virtual step counter driver is being triggered by the physical step count sensor in order to provide the output
to the host.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 30|71

4.1.5 Driver hang detection

The sensor framework includes a timer-based hang detector driver which monitors physical drivers for possible hangs.
Hangs are detected if the driver does not start producing samples within 1 second of turning a sensor on or if the number of
actual samples a physical driver produces is less than the expected number of samples, based on the current rate. The
hang detector runs at a rate of 25 Hz.

In the event a hang is detected, the hang detector will issue a reset to the physical driver.

Hang detection does not run for a physical driver if any of the following conditions are true.
¢ Theno hang flagin the physical driver descriptor is set.
e The current power mode is SensorPowerModelnteruptMotion.
e The current rate is less than 3 Hz.

4.2 Drivers directory structure

Sensor driver code must be located in its own directory in the $SDK/drivers tree. The directory name should reflect the device
name and driver type — for example 2AK09915Mag. Each driver directory should include four mandatory files as outlined in
Table 8.

Table 8: Driver Directory Content

N
Directory
CMakelLists.txt Compilation Makefile for driver source code

SensorNameType.c Source code for driver functions

Header file typically defining register locations and other constants for the

SensorNameType.h driver

The developer is encouraged to use one of the available driver source codes as a template for creating new drivers.

4.3 Driver CMakelLists.txt file

Figure 9 shows an example of a driver CMakeLists.txt file. The CMakeLists.txt file automatically pulls in the sources from
each driver. The user typically does not need to modify it. The driver directory name must be added to the
ENABLED DRIVERS definition in the appropriate $SDK/common/config.7189_di03_*.cmake file to be included in the SDK
build.

DRIVER IDis a unique value which can be queried by the Host to identify the driver ID of the sensor driver in the system.
This allows more generic host driver code to be implemented for the BHy2. Currently unused driver IDs in the ranges of 100-
125 and 165-180 can be used for new drivers. Note that a corresponding definition for the driver ID will be set by the build
system when compiling the driver.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 31|71

SET (DRIVER ID 132)
get filename component (DRIVER KEY ${CMAKE CURRENT LIST DIR} NAME)

project (${DRIVER KEY} C)
FILE (GLOB SOURCES "*.c")

include directories(../../libs/BSXSupport/includes/
../../1libs/BSX/includes/)

ADD ARC DRIVER (${DRIVER KEY} {DRIVER ID} ${SOURCES})

Figure 10: Custom Driver CMakelLists.txt Example

4.4 Checking for existing Driver IDs

There is a python script in the root directory of the SDK. Running it will show the existing driver names and associated
driver IDs. Using this script will need an existing installation of Python.

$ python find_BHy2_ driver_IDs.py

4.5 Writing driver code

The actual sensor driver code is typically written in two files. SensorNameType.h should contain the sensor register map and
constant definitions. Its use is highly recommended for improved readability. Most of the code is written in the
SensorNameType.c source file. Its individual parts are described in the following subsections.

4.5.1 Recommended include files

Figure 10 shows an example of include files typically used for sensor driver code. SensorAPlh defines constants and
structures used in driver code and includes necessary sensor bus definitions. Timer.h allows the developer to use the timer
for sensor access scheduling and is necessary for polling sensors. bsx_support.h provides access to BSX algorithm data.

#include <SensorAPI.h> /* Interface available to custom
hooks and drivers */

#include <Timer.h> /* Timer control routines */
#include <bsx support.h> /* Access to bsx algorithm data */

Figure 11: Driver Include Files Example

4.5.2 Sensor communication support

Most sensor devices are controlled by the BHy2xx/BHI3xx via a SPI or 12C interface. There are three possible sensor
interface busses: SIFQ, SIF1, and SIF2. SIFO and SIF1 can be configured to use a SPI master or 12C master block in the
BHy2xx/BHI3xx. SIF2 is always I12C. Note that the BHA260 does not expose the M1 bus. At most, there can be two enabled
SPI masters or two enabled 12C masters, so not all combinations are possible. The combination used for a given firmware
image is specified in the board configuration file’s sif_selection line. See section 2.2.1 for more details.

The BHy2xx/BHI3xx makes it easy for driver writers by hiding the differences between the 12C and SPI masters with a
general-purpose Sensor Bus design and associated read and write functions.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

https://www.python.org/

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 32|71

4.5.2.1 Sensor communication APIs

There are a variety of read and write functions to meet different needs. All the functions take a pointer to the device structure
which is a member of the physical driver’s sensor descriptor structure. The non-blocking functions also take a void pointer to
a data parameter; this is a user-defined value which will be passed unmodified to the user’s callback function as the second
parameter. The function prototypes can be found in $SDK/libs/Sensorinterface/includes/SensorAPI.h.

e Blocking — waits for the read or write to complete before resuming execution of the calling function

e SensorStatus write data(const Device *device, UInt8 reg, UInt8 *buffer, UIntS8
bytes)

e SensorStatus read data(const Device *device, UInt8 reg, UInt8 *buffer, UIntS8
bytes)

e Non-blocking — schedules the read or write and immediately returns to the calling function; when the read or write
actually completes, the provided callback function is called; for writes, the buffer of data to write must continue to exist
until the callback is called, which means it cannot be allocated on the stack of the calling function — it must be global.

e void write data nonblocking(const Device *device, UInt8 reg, UInt8 *buffer,
UInt8 bytes, void (*callback fn) (SensorStatus, void*), void *data)

e void read data nonblocking(const Device *device, UInt8 reg, UInt8 *buffer,
UInt8 bytes, void (*callback fn) (SensorStatus, void*), void *data)

e Inline Non-blocking — only available for writes. These calls can be used to send 4 or less bytes from a buffer local to the
calling function which are used immediately — they do not need to persist until the callback, as in the other non-blocking
writes. Note that write data slow inline nonblocking also introduces a delay between byte transfers (see
“Slow” below).

e void write data inline nonblocking(const Device *device, UInt8 reg, UIntS8
*buffer, UInt8 bytes, void (*callback fn) (SensorStatus, void*), void *data)

e void write bytes inline nonblocking(const Device *device, const UInt8 *buffer,
UInt8 bytes, void (*callback fn) (SensorStatus, void*),void* data)

e void write data slow inline nonblocking(const Device *device, UInt8 reg, UIntS8
*buffer, UInt8 bytes, void (*callback fn) (SensorStatus, void*), void *data,
float delay)

¢ Slow — some sensor devices, especially when in low power states, require long delays between byte transfers; these
slow variants take a delay parameter which sets the minimum time between bytes in milliseconds

e void write data slow nonblocking(const Device *device, UInt8 reg, UIntS8
*buffer, UInt8 bytes, void (*callback fn) (SensorStatus, void*), void *data,
float delay)

e void read data slow nonblocking(const Device *device, UInt8 reg, UInt8
*buffer, UInt8 bytes, void (*callback fn) (SensorStatus, void*), void *data,
float delay)

¢ Register-less — the above APIs work well with sensor devices which use a single byte to specify which of the sensor’s
internal registers is to be read from or written to; for devices which cannot work in this mode, there are the following
functions

e void write bytes nonblocking(const Device *device, UInt8 *buffer, UInt8 bytes,
void (*callback fn) (SensorStatus, void*), void *data)

e void read bytes nonblocking(const Device *device, UInt8 *buffer, UInt8 bytes,
void (*callback fn) (SensorStatus, void*), void *data)

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 33|71

4.5.2.2 Sensor communication best practices

The blocking read and write APIs are simple, but they can have a dramatic impact on the runtime behavior of the
BHy2xx/BHI3xx. Whenever these blocking APIs are called by a driver, any other driver running at the same interrupt priority
level will be prevented from running even if they use a different SIF. This is especially bad if the driver using the blocking
APlIs uses slow 12C transfers while the blocked driver uses fast SPI transfers and is running at a much higher sample rate.

Another problem can occur if the driver uses delay functions between blocking transfers. These delay functions will again
prevent any other physical driver at the same priority level from doing useful work.

It is best to write your driver in an event-driven, non-blocking fashion. This allows the BHy2xx/BHI3xx sensor framework to
maximize performance of all sensors on all SIFs, and ensures any non-sensor interrupt handling can proceed efficiently.

Here are some helpful tips:

1. The driver initialization function is called when the system starts up AND later to recover from sensor failures; so it
is important that all driver initialization functions use non-blocking calls and state machines, so they have minimal
impact on the rest of the system

2. Do not use blocking calls; use non-blocking calls which handle next steps in a series of steps from one or more
callback functions

3. The callback parameter can be NULL if no further processing must be done upon receipt of read data, but, your
driver will not be able to detect fatal read failures on 12C devices without that callback

4. Do use the data parameter for each callback to simplify your logic; it can be used to maintain a state variable, so one
callback function can handle a multi-step initialization function

5. Do not use fixed delays but instead use the slow APIs; these use the timer hardware so other drivers can proceed
as needed until the timer expires

6. Do use the inline writes for small writes, so you do not have to use global buffers, which consume RAM unnecessarily

7. For non-blocking writes larger than 4 bytes or for non-blocking reads, use global buffers, as they must be valid in
both the original calling function and later in the callback function.

4.5.3 Sensor descriptor structure

To achieve interoperability of application code with multiple different sensors from many vendors, the driver interface is
defined in a sensor independent fashion using a sensor descriptor. Every sensor driver implementation must provide an
initialized declaration of a sensor descriptor for that sensor. The sensor descriptor is composed of a common sensor
descriptor header followed by data specific to physical or virtual sensors.

Note that a sensor driver must not directly modify data in its own sensor descriptor, aside from the members that are initialized
at build time or initialization, with the exception of the status.enabled bit (see Table 9) and the int enabled bit (see
Table 15). Also, a sensor driver must not modify the sensor descriptor data for any other sensor drivers. The sensor
framework is completely responsible for managing and setting all other sensor descriptor information. In addition, some
sensor descriptor fields may be configured through parameter I/O by the host.

4.5.3.1 Sensor descriptor header

Physical and virtual sensors share a common header that includes the following fields.

e TriggerList
e Sensorinfo
e SensorType

The TriggerList field is a pointer to a sensor descriptor header and is used to form a linked list of sensors that are triggered
by a single sensor trigger source. During the build process, the stuffelf utility uses information from the trigger source
field for all virtual sensors to form linked lists of sensors that are triggered by a single source sensor trigger. Driver code
should not modify this list.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 34|71

The Sensorinfo structure outlined in Table 9 provides basic information about a virtual or physical sensor driver, as well as
the current status of the driver. The definiton of this structure can be found at
$SDK/libs/Sensorinterface/includes/SensorAPl.h. The driver ID and version are filled in by stuffelf based on
information provided in the driver config file. The status fields are updated during runtime by the sensor framework and
cannot be modified by the user with the exception of status.enabled. This bit can be modified by the user in the
VirtualSensorDetermined hook to turn on a sensor that the user requires to be on (whether the host requires it or not).
See section 4.8 for details on how to use hooks.

Table 9: SensorDescriptor — Sensorinfo Structure

g Toe Jomeimion ——— Jorweracess

The current driver ID of the
sensor, should be set to

DRIVER_ID. Stuffelf wil St DIRIVIER)G

1d UInt8 . . descriptor definition, then
incorporate the value set in read-onl
the driver config file at build y
time.
The current driver revision of
the sensor, should be set to .
. DRIVER_REV. Stuffelfwill Sct to DRIVER_REV in
version UInt8 . . descriptor definition, then
incorporate the value set in read-onl
the driver config file at build y
time.
. Number of bits of resolution Set in descriptor definition,
resolution UInt8 X
of the sensor input data then read-only
reserved UInt8 Reserved byte None
Read-only via the
status.triggered UInt8 The sensor has been isSensorTriggered API
scheduled to run .
function
Can be modified only in the
status.enabled UInt8 The sensor has been VirtualSensorDetermined
enabled
hook
status.i2c nack Utnts The sensor has had an 12C Read-only

communication error

status.devid error UInts 1he sensor was not detected Read-only

at the supplied address
The sensor had a transient

status.transient error UInt8 Read-only
- error
Flag used to track whether all
status.list_ran UInt8 triggered sensors on a trigger Read-only

source’s trigger list have run.
The host interface has

status.rate changed UInt8 updated the Read-only
lastRequestedRate entry
The host interface has
status.range_changed UInt8 updated the Read-only

lastRequestedRange entry

The sensors trigger has not
status.pending trigger UInt8 finished running, but a new Read-only
trigger has arrived

The sensor framework has
status.enabled ack UInt8 acked that the driveris Read-only
enabled

Signal from physical sensor

to associated virtual sensor;
status.just_turned on UInt8 used to trigger an on-change Read-only

sensor to output its current

value

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

.
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

I Y T S

UInt8

status.reserved

pad0

UInt3

2

Reserved None

Reserved None

y
35|71

The SensorType structure outlined in Table 10 provides basic sensor properties, including the sensor ID, sensor type and

several flags that specify the sensor’s

behavior. The definition of this structure can be

found at

$SDK/libs/Sensorinterface/includes/SensorAPl.h. These values should be set in the declaration of the driver's sensor
descriptor and should not be modified during run-time.

T N T

value

flags
wakeup ap
no_hang

no decimation
on_change

always on

hidden

decimate integer

on_change map bit

reserved flags

reserved

4.5.3.2 Physical sensor descriptor fields

Table 10: SensorDescriptor — SensorType Structure

UInt8

2 bits

0

0

2 bits

/

/

bits

1

1

UInt8

Sensor ID

Sensor type flags - Virtual, Timer or Physical

If true, sensor data is placed in the wakeup FIFO, otherwise
the non-wake FIFO.

Disable hang detection code for physical sensors

Always use the parent sensor rate, even if a slower rate is
requested by the host

This is an on-change sensor, which will require special
processing when samples are lost

This is used to ensure that the driver is always enabled, even
if no children are enabled

This sensor should be hidden by the host interface. Note that
sensors may also be made invisible by assigning a sensor
type in the invisible range.

If 0, virtual sensor output rate will decimate from the source
sensor rate by a power of two. If 1, any integer value will be
used.

Bit map value assighed to each on-change sensor, used to
track whether an on-change sensor has been triggered. Used
when handling lost on change events.

Reserved

Reserved

Following the sensor descriptor header, the physical sensor descriptor has a number of additional fields specific to physical

sensors, including the following.

¢ Device structure
e Function pointers
e Data parameters

The Device structure outlined in Table 11 provides a physical descriptor of a physical sensor device. Note that some device
data fields of physical sensors are replaced by the stuffelf utility using data in the board configuration file, since their
value depends on the actual application (options.i2c.address, irqgPin, irgDis). The 12C and SPI protocol
parameters are used to configure the physical interface to the sensor.

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

T b
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 36|71

Table 11: SensorDescriptor — Physical Device Structure

interface.handle

interface.type

interface.options

options.i2c
options.spi
irgPin
irgEdge

irgDis

The interface handle based on the interface

voidr type, initialized by the firmware
EznsorlnterfaceTy The selected interface type for the sensor
SensorIntertaceTy All possible interface types for this sensor driver
I2C Device t See Table 12

SPIM Device t See Table 13

5 bit GPIO Pin to monitor for interrupts

0/1 1=Rising edge, 0=Falling edge

0/1 1=No GPIO pins used for this sensor

Table 12: 12C Device (12C_Device_t)

maxClock

Reserved

hasClockStretchin

g

address

Reserved

maxClock
csPin
csLevel
cpol

cpha
en3wire
1sb first
Reserved
reg shift
read pol

read bit

UInt8

UInt8

0

/1
/1
/1
/1
bits
bits
/1

bits

. Max clock speed supported
6 bits Reserved
0/ 1 0 0=No clock stretching,

7 bits

1=Clock stretching

7-bit slave address (MSB =
0)

UInt8 Reserved

Table 13: SPI Master Device (SPIM_Device _t)

UIntl6

Max SPI clock speed supported by the device (kHz)

GPIO pin number of the chip select signal

Chip select value to select the chip, 1=Active high, 0=Active low
SPI clock active polarity, 0O=negative, 1=positive

SPI clock active phase, 0=leading clock edge, 1=trailing clock edge
Disable/enable 3-wire SPI

SPI data shift direction, 0=MSB first, 1=LSB first

Reserved

Number of bits to shift the register address by to generate the
command byte

Read signified by a 0 or a 1 in the command byte

Bit position for the read/write bit, often bit 7 or bit 0.

The function pointers in a physical sensor descriptor are outlined in Table 14. These fields specify pointers to functions that
set and retrieve sensor state and parameter settings as well as scheduling a read of the sensor sample. These values should

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 37|71

be set in the declaration of the driver’s sensor descriptor and should not be modified during run-time. More details on each
of these functions can be found in section 4.4.4.

Table 14: SensorDescriptor — Physical Sensor Function Pointer Fields

Cncton———Joseoion

Sensor State and Parameter Setting

Verify the sensor connection and initializes the sensor into a known power

initialize
down state

set power mode Put the sensor to the requested power mode

set sample rate Put the sensor to the requested rate to produce data (sample rate)

Set the sensor to the requested dynamic range, return the actual dynamic

set dynamic range
- - range

set sensor ctl Set specific sensor configuration (FOC, OIS, or FST)

enable interrupts Enable interrupt generation by sensor

disable interrupts Disable interrupt generation by sensor

Sensor State and Parameter Query

get power mode Return the current sensor power mode

get sample rate Return the current sensor sample rate

Return multiplicative scale factor for conversion of sensor result to

get scale factor .
- - common units

get dynamic range Return the current dynamic range sample rate

get sensor ctl Return specific sensor configuration (FOC, OIS, or FST)

Sample Data Handling

get sample data Schedule 12C read transaction to read a sensor sample

The Data parameters in a physical sensor descriptor are outlined in Table 15. These data fields contain actual parameters
which are needed for the system to handle physical sensors properly. The CalMatrix field is provided by stuffelf from
the driver config file and is used to rotate (if needed) the physical sensor data to match the required sensor orientation of the
device from a user’s perspective. The lastRequestedRate and lastRequestedRange fields are used by the host
interface API call for the requested rate/range if a rate/range change is needed.

Table 15: SensorDescriptor — Physical Sensor Data Fields

Data timestamp for the sensor

latestTimestamp

newTimestamp

UInt64 Latest valid timestamp

UInto64 Latest timestamp, even for invalid data

Minimal value of parameters

minRate

float Minimal rate (in Hz) of the sensor

Maximal value of parameters

maxCurrent

maxRate

float Maximal current draw of the sensor. units: [mA]

float Maximal rate (in Hz) of the sensor

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

T b
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 38|71

maxDynamicRange UIntl6 Maximal dynamic range of the sensors in [units]

Default value of parameters

Default dynamic range to use if not requested by the

defaultDynamicRange UInlé6
Y b host

Request for parameter changing

Last requested rate for the sensor as determined by

lastRequestedRate float .
b the outerloop. Do not modify.

lastRequestedRange UIntlé6 Last requested range for the sensor. Do not modify.
Sensor calibration

CalMatrix SInt8 [9] 3-axis calibration matrix to apply to 3-axis sensor data
Data access

sensorData void* Direct access to sensor data

numAxis 7 bits Number of axes in the sensor

Hang detection

Number of sample events needed before a sensor is
considered alive

Number of 25 Hz timer intervals to wait before
checking for a hung sensor

resetDivisorCount UInt8

resetDivisorTimeout UInt8

sampleCount UInts8 Number of sample events since the last hang check
resetCount UInt8 Number of recent reset events for the sensor
resetCountLimit UInt8

needsReset UInts8 Flag indicating that the sensor should be reset

Sensor interrupt or timer state, 0 = disabled, 1 =
int enabled 0/ 1 enabled. Should be set/cleared when the driver
enables/disables the sensor interrupt.

Sensor control parameter read/write
sensorControlCode 7 bits Sensor control parameter code

sensorControlDir 0/ 1 Sensor control parameter direction, 0 = write, 1 = read

4.5.3.3 Virtualftimer sensor descriptor fields

Virtual and Timer sensors share the same Sensor Descriptor. For a virtual/timer sensor, the Sensor Descriptor is composed
of a Sensor Descriptor Header followed by a number of additional fields specific to virtual/timer sensors, including the
following categories.

e Trigger source

e Physical source
¢ Function pointers
e Data parameters

The Trigger source structure specifies the ID (value) and type (flags) of the sensor that is a trigger for this virtual sensor.
For example, a virtual accel driver would specify its trigger source value as BSX INPUT ID ACCEL and its trigger source
flags as DRIVER TYPE PHYSICAL FLAG. A timer sensor must also fill in the timer field in the trigger source structure. At

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

39| 7

build time, the stuffelf utility uses the trigger source from each virtual sensor to compile the trigger lists. Trigger source

data of virtual sensors are set during initialization.

Table 16: Trigger Source Timer

Item

Decimate 2 bits
decimate max 6 bits
Index SInt8

Rate UIntlé6

0=Never, 1=Always, 2=Power of two

Maximal value for rate decimation

Actual sensor data rate

The Physical source specifies the ID and type of the physical sensor that primarily affects this virtual sensor’s data.

The Function pointers in a virtual sensor descriptor are outlined in Table 17. These fields specify pointers to functions that
process and allow access to sensor data as well as initialize the virtual sensor. More details on each of these functions can

be found in section 4.4.4.

Table 17: SensorDescriptor — Virtual Sensor Function Pointer Fields

cton———— Jomsepion

Sensor State and Parameter Setting
Initialize

Sample Data Handling
handle sensor data

get last sensor data

Verify sensor connection and initializes sensor into a known power
down state

New data processing

Used for on-change sensors

The Data parameters in a virtual sensor descriptor are outlined in Table 18. Virtual Sensor Descriptor data fields contain
actual parameters which are needed for the system to handle sensors properly. If the programmer wishes to update the
dynamic range of the sensor, they should use the host interface API call to update the requested rate/range if a rate/range

change is needed.

Table 18: SensorDescriptor — Virtual Sensor Data Fields

priority UInt8
decimationLimit UInt8
decimationCount UInt8
outputPacketSize UInt8
timestamp UInto4

Request for parameter changing

lastRequestedRange UIntlé6

lastRequestedRate float

The priority level to run the virtual sensor calculations
Internal use only

Internal use only

The number of bytes in the sensor output packet,
excluding the Sensor ID

The timestamp of the source causing the driver to be
triggered

The last requested range for the sensor as determined
by the host interface. Do not modify.

The last requested rate for the sensor as determined
by the host interface. Do not modify.

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 40| 71

4.5.4 Sensor driver functions

This section discusses the functions that should be defined for each sensor driver.

Not all functions from function pointer fields for physical and virtual sensors must be implemented. Please see section 4.6
for the functions required. Unimplemented function pointers must be set to NULL in the Sensor Descriptor data structure.

Note that it is very important that none of the sensor descriptor functions should be called directly from driver code. They are
provided by each driver but must only be called by the sensor framework.

4.5.4.1 Sensor State and Parameter Setting Functions

The following two sections describe individual sensor functions defined in the Sensor Descriptor.

e initialize is called whenever the BHy2xx/BHI3xx transits from Initialized state to operational state. This function
may also be called if a sensor is in an unknown/unusable state. This function shall not affect the state of another sensor
driver. In the event of a composite sensor, this driver may temporarily affect the state of another sensor driver, however
once initialization is complete, the sensor should return to the state specified by the other sensor driver. This function
must perform the following operations:

o Verify that a device is found with the specified 12C/SPI configuration. The status code SensorErrorNonExistant
must be returned if no device is found.

o Verify that the driver can talk with the found device. This is often done by checking the WHO_AM | register if
available. If a device that the driver does not understand is found, SensorErrorUnexpectedDevice must be
returned by the function.

e Once a known device is found, the initialize function should reset the sensor to a known state for the driver, as well as
ensure that the device is in the SensorPowerModePowerDown power mode.
set_power_mode is called shortly after initialize to handle sensor power mode transitions. Itis also called during
sensor teardown operation before transition to Initialized. This function shall not affect the power mode of other
sensor drivers. Supported sensor power modes are defined in SensorAPI.h and are described in Table 19.
Requirements for which power modes are required to be implemented are shown in Table 20. The driver developer
should map sensor power modes to actual power modes of a particular sensor (see example drivers for inspiration). This
function must return the actual power mode selected by the sensor driver, even if the requested power mode is
unsupported. After setting the required power mode, the callback function sensorPowerModeChanged must be called
to report that the power mode has been updated.

Table 19: SensorPowerMode Definition

Lowest power state supported by the sensor driver. Sensor data
SensorPowerModePowerDown conversions should be disabled here and the device should be shut down.
The driver should be able to transition to an active state within 1000 ms.
Low power state where sensor data conversions have been disabled,
SensorPowerModeSuspend however the system must be able to transition into an active state within
100 ms. This state may be the same as SensorPowerModePowerDown.
Perform a sensor self-test. The sensor driver must call the
reportSelfTestResult function once the test has completed, as well
SensorPowerSelfTest as transition to the SensorPowerModePowerDown state.
Note that the x, y, z offset results should be provided in the native units for
a given sensor, e.g., mg for accel or dps for gyroscope.
Enter a FOC calibration mode in the sensor. The sensor driver must call
the reportFOCResults function once the test has completed, as well as
transition to the SensorPowerModePowerDown mode once the FOC is
complete.
Note that the x, y, z offset results should be provided in the native units for
a given sensor, e.g., mg for accel or dps for gyroscope.
Put the sensor to a special state where the device only provides interrupts
when a specified sensor data threshold has occurred.

SensorPowerModeFOC

SensorPowerModeInterruptMotion

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 41|71

Cause the sensor to complete a single sensor data conversion.
SensorPowerModeOneShot SensorPowerModeSuspend or lower should be entered automatically
afterwards.

Operational power state where sensor settings are optimized for low
power. This state may have higher noise than the

SensorPowerModeLowPowerActive SensorPowerModeActive mode. If SensorPowerModeActive is
implemented, this state must also be implemented; however it may be the
same state as SensorPowerModeActive.

Operational power state where sensor settings are optimized for high

SensorPowerModeActive performance. This state should have minimal noise in sensor
measurements.

Table 20: set_power_mode Driver Requirements

Sensor Type/Requirements
Power Mode

i Sensosroubonodetutpend Sensoszoubomodeuspend
SensorPowerModeSuspend Required Required
SensorPowerModeSel fTest Optional Optional
SensorPowerModeFOC Optional Optional

Recommended, will be required in

SensorPowerModeInterruptMotion Optional future releases

SensorPowerModeOneShot Optional Optional

. Required - may duplicate Required - may duplicate
S P ModeLowP Act . .
SASOLrFOWEIHOAELOWEOWELACELVE SensorPowerModeActive SensorPowerModeActive
SensorPowerModeActive Required Required

e set_sample_rate is used to set the sensor measurement rate. This function is called after initialization and any time
the requested sensor sample rate has changed. If a sensor supports a continuous conversion mode, this function will set
the corresponding register in the sensor to enable the mode. The function typically checks an internal list of supported
rates and sets the one which is greater or equal to the requested rate.

In the case of polled sensors, the requested rate is ensured by the internal timer. In that case set_sample rate uses
the timer API defined in Timer.h for scheduling the sensor interrupt at regular intervals (For an example of a polled
sensor driver refer to the AK09915Mag). Note that set sample rate and set power mode can be called in any
order. Actual operation of the sensor should be controlled by set power mode while the set sample rate should
only set the rate register.

This function is required if the sensor supports SensorPowerModeLowPowerActive Or SensorPowerModeActive.
This function shall not modify the sample rate of another sensor driver unless the sensor is a composite sensor, in
which case, the sample rate of the other composite sensor driver may be updated. The composite sensor rate should
be greater than or equal to all requested rates for the sensor if they cannot be set individually. All sensors must implement
the callback function sensorRateChanged () that updates variables for hang detection calculation.

e set_dynamic_range is used to change the maximum range of a sensor. Implementation is required, even if it is an
empty function. This function is called during initialization to set the sensor into the desired range for the main fusion
algorithm. This function must set the sensor to the specified range or higher. For example, if a gyro supports 100, 500,
2000 dps, a request of 300dps will result in a range of 500 dps, while a value of 1000 dps would result in a value of 2000
dps being set.

¢ enable_interrupts / disable_interrupts should enable/disable interrupts for a given sensor at its source (the
sensor). Implementation is optional. In some sensors this is equivalent to enabling/disabling actual operation. If that is

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 42 | 71

the case, the driver should check the current driver power state and enable operation only when sensor is in one of its
operational states.

e In case of polled sensors, the enable/disable interrupt functions should enable/disable scheduling the timer interrupt
(refer to the AK09915MagSensor driver code for an example). The enable interrupt function should allow interrupts from
the sensor to be received within 100ms of the function being called.

4.5.4.2 Sensor state and parameter query functions

Implementation of all query functions is required for all sensor drivers.

e get power mode, get sample rate, andget dynamic range should return the actual sensor settings. Note
that the driver should cache power mode, sample rate value and dynamic range values in internal state variables instead
of reading them from the sensor over the sensor bus.

e get scale factor isused to convertraw sensor data to calibrated values. It returns factors specific to a given sensor
type. Note that these values could depend on the dynamic range setting.

4.5.4.3 Sensor data handling functions

Table 21 provides a summary of the sensor data handling functions for both physical and virtual sensors.

Table 21: Summary of Sensor Data Handling Functions

Sensor Driver Function Physical

interrupt handler sensorInterruptHandler N/A

Save callback
Read sensor data using sensor bus

Extract data into correct form (from
physical sensor data format to format Begin virtual calculations.

get sample data N/A

expected by virtual Use
handle sensor data .
= = handle_sensor_data function) reportSensorEvent to
Save data to self->sensorData cause data output

Call saved callback

Figure 11 shows the interaction between the Sensor Driver routines for physical sensors and other software elements. The
physical sensors feed data to virtual sensors using the sensor framework. The programmer should refrain from including
calculations in physical sensor drivers and should instead utilize virtual sensor drivers for calculations.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 43 | 71

Built-in firmware — sensor independent

l:tee"rﬁt _|,/GPIOISR
to GPIO Foreach triggered GPIO call

gpiolinterrupt Handler(gpio)
Read HW Timestamp
sensorinterrupt Handler(Timestamp, PhysicalSensorDescriptor)

l InterruptCallback (PhysicalSensorDescriptor)
sensorinterrupt Handler(Timestamp, PhysicalSensorDescriptor) Trigger dependent Virtual sensors
Save Timestamp Spawn subsequent Data Processing
Call get_sample_data(&InterruptCallback, PhysicalSensorDescriptor) A
Sensor Driver Level
sensor specific
\ 4
get_sample_data(&InterruptCallback, PhysicalSensorDescriptor) handle_sensor_data(Status, PhysicalSensorDescriptor)
Save Interruptcallback function address —» Format data into correct form
Call read_data_nonblocking (&handle_sensor_data) Call saved Interruptcallback function(PhysicalSensorDescriptor)

A

A

A A

Sensor Bus Level -
. read_data_nonblocking
sensor independent
12C SPI
12C Driver | SPI Driver
i2c_read_data_nonblocking | spi_read_data
Schedule i2c read transfer ‘T> Schedule SPI read transfer
using 12C Transaction Queue using SPI Transaction Queue
12CMasterDone ISR | SPIM_Handlelnterrupt
l Retrieve data from 12C Controller ¢ Retrieve data from SPI Controller
12c Handle error conditions' L | SPI Handle error conditions‘
) Schedule next transaction . Schedule next transaction
Transaction | Transaction
Q Call handle_sensor_data(Status, Queue Call handle_sensor_data(Status,
USe PhysicalSensorDescriptor) | PhysicalSensorDescriptor)
|

New I12C Transfer Request" 12C Transaction Done Interrupt v

Figure 12: Physical Sensor Data Handling

A physical sensor signals availability of new data using a GPIO interrupt line. The GPIO interrupt service routine (ISR)
determines which GPIO interrupts have fired and calls gpioInterruptHandler for each GPIO that has fired.
gpioInterruptHandler is shared by all GPIO-based physical sensors. This function reads timestamps from the
appropriate register and calls sensorInterruptHandler with the determined 64-bit timestamp and physical sensor
descriptor.

sensorInterruptHandler stores the timestamp in appropriate internal data structures. It then calls the sensor specific
get_sample data function from the passed in physical sensor descriptor with an interrupt callback that is used to notify
the framework once the new data has been read in.

The sensor specific get sample data typically calls read data nonblocking to read out the sensor data that caused
the interrupt. This function must ensure that the passed in callback function is called once the sensor data has been read in.
Typically, this requirement is fulfilled by storing the pointer in an internal static variable (part of the driver code) and calling it
from the sensor bus read data callback function. This read data callback function is used to format the sensor data in a
generic way, then to call the framework callback function.

read data nonblocking is part of the Sensor Bus Interface API that abstracts the lower level 12C /SPI bus interface from
the sensor driver. It calls i2c_read_data_nonblocking or spi_read_data depending on whether the sensor driver initialized
the sensor device as an 12C or SPI device. These functions schedule a read transfer on the bus that will be executed once
all previous transactions have finished. If no pending transactions exist, then it will immediately start the requested
transaction. Once the read transfer has completed, it will call back into the driver with the transaction result. Please note that
the blocking version of read data/write data cannot be used in priority level 1 code (such as sensor bus callbacks,
timer callbacks, parameter read/write handlers, and GPIO handlers).

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 44 | 71

The 12C /SPI callback functions extract the data result and status information from the data read on the bus. Typically, byte
swapping, shifting, and basic calibrations are done here. The driver should also check the data validity based on sensor error
indications (if available). Finally, these functions call back into the sensor framework utilizing the stored
interruptCallback function. The interruptCallback triggers other virtual sensors that are dependent on this
physical sensor.

4.5.4.4 Virtual sensor data handling functions

Built-in firmware — sensor independent
SW - |SWISR
Interrupt ™| call handleTriggeredSensors(priority)
handleTriggeredSensors(priority)
Go through all defined physical and timer drivers and call
handleTriggerList(SensorDescriptor, priority)
handleTriggerList(SensorDescriptor, priority) report (i Descriptor, &output, timestamp)
Gothrough the trigger list and call (if driver is triggered and priority Send data to the host interface
level fits)
handle_sensor_data(SensorDescriptor) A
T
|
' |
Sensor Driver Level — sensor specific i
handle_sensor_data(SensorDescriptor)
Perform sensor data evaluations
reportSensorEvent(SensorDescriptor, &output, timestamp)

Figure 13: Virtual Sensor Data Handling

Figure 12 shows the interaction between Virtual Sensor Driver routines and other software elements for virtual sensors.
Virtual sensor drivers are able to consume data from physical sensors and other virtual sensors and also provide it to other
virtual sensors. These drivers should contain any needed calculations. The following paragraphs describe the typical flow of
control and data when virtual sensors are triggered.

Triggering of a virtual sensor is signaled by a software interrupt setting the SwI2 bitto oneinthe AR SOFTWARE INT register.
The SWI ISR calls the handleTriggeredSensors function as soon as the execution of a higher interrupt priority is finished.

handleTriggeredSensors goes through all defined physical drivers and timer drivers and calls handleTriggerList
with input parameters referencing the SensorDescriptorHeader* source andUInt8 priority (the priority is passed
in from SWI ISR routines).

handleTriggerList checks whether the input sensor is triggered. If it is, the function goes through the trigger list and
calls handle sensor data functions for the sensors which are triggered and whose priority fits the required priority level.

handle sensor data virtual sensor function processes data and calls reportSensorEvent for sending data to the host
interface when required.

4.5.5 Using custom sensor IDs to send data to the host

If a new custom virtual driver produces data that does not conform to an existing BSX sensor type already defined in the
datasheets of BHI360, BHI260AB and BHA260AB, Reference 1, Reference 2 and Reference 5, then you will need to define
your own by completing the following steps.

Select a new Sensor ID (see section 4.1.2.4).

Set the virtual sensor descriptor . type.value field to the new Sensor ID.

Determine the data packet format (e.g., 3 16 bit signed integers).

Determine the size of the whole sensor data packet (1 byte for Sensor ID plus the size of the data packet). This value
goes in the . outputPacketSize field of the sensor descriptor.

PoObd=

When you add a custom virtual sensor, you specify the new Sensor ID in the virtual sensor descriptor’s . type.value field.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 45| 71

4.5.6 Connection between Driver ID and Sensor ID

The link between driver ID and sensor ID is made using the CMakelLists.txt file in the source directory for your new virtual
driver, the board config file used to specify the contents of your firmware image, and the virtual sensor descriptor in the
driver’s .c file. The driver ID must be placed in the sensor descriptor in the .info.id field in addition to the CMakelLists.txt file.

The sensor ID only appears in the virtual sensor descriptor; only virtual sensors can output data to the host. If you add a new
physical sensor driver (e.g., a humidity sensor), you also need to add a corresponding virtual sensor to be triggered by your
physical sensor, access the physical sensor data, convert it to the proper host format, then send it to the FIFO with
reportSensorEvent.

4.5.7 Virtual sensor host interface

When the firmware starts up, internal data structures used to organize the sensor drivers are initialized. These structures are
then automatically used by the host interface firmware to handle host requests. This will be done for you; there is no effort to
have your sensor driver configured or report its status.

These internal data structures exist for all non-wakeup and wakeup sensors. These structures include the current host
request for each sensor’s sample rate and latency; the size in bytes of the event to be placed in the FIFO; whether the sensor
is on-change, etc. When your virtual sensor driver calls reportSensorEvent, the sensor framework uses these structures
to decide which FIFO (none, either, or both) to insert the data into. If the sample rate the host requests for one FIFO is
different from the other FIFO, the firmware will automatically decimate it so that fewer samples go into the lower rate FIFO.

4.5.8 Handling special cases

Table 21 summarizes the approach to write sensor drivers for the most typical sensors. Only the get sample data /
handle sensor data functions have to be programmed and the interrupt handler has to be correctly selected. However,
there are special cases which require more custom programing. Special cases are described briefly in Table 22. A detailed
description of these special cases is beyond the scope of this document. The user is encouraged to contact Bosch Sensortec
for further assistance with writing drivers for special cases.

Table 22: Summary Special Sensor cases

Special Case What to do ?

e Custom interrupt handler
Sensor bus read to determine source of interrupt
Sensor bus read callback function to direct execution
to the generic interrupt handler for other sensor
drivers (sensorInterruptHandler ())

Composite device with shared interrupt
pin
between multiple sensor types

Scheduling done using Timer.h functions
Timer ISR sends sensor bus command to start
Polling sensor with scheduled measurement
start of measurement e Sensor data availability signalled using GPIO and
processing using standard interrupt handlers
(gyro/mag/accel/sensor).

e No interrupt_handler (no GPIO interrupt)

Polling sensor with scheduled e Scheduling of data read done using Timer.h
new sensor data read functions
(no sensor GPIO IRQ) e Timer ISR must create timestamp and call standard
interrupt handler (sensorInterruptHandler ())
Virtual sensor with continuous e Trigger source is Timer with a OHz rate
triggering e Cannot have any children
e Programmer must call
Virtual sensor with programmatic triggerSensors (descriptor) to start the trigger
triggering chain

o Rate is determined by programmer and may vary

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 46 | 71

4.6 Sensor data injection drivers

The Set Sensor Data Injection Mode and Inject Sensor Data commands give the host the ability to inject sensor data into the
sensor framework instead of receiving sensor data from physical sensors. Sensor data injection requires that special data
injection drivers are built into the firmware image instead of the normal sensor drivers. These drivers must register themselves
with the sensor data injection module during initialization. The function prototype for this is shown in Figure 13. In addition,
the driver must handle injected data in its get sample data function and pass the injected data on to the sensor
framework.

SensorStatus SDI initializeSensor(sdi _entry t *entry);

Figure 14: Sensor Data Injection Function APls

The following sections provide more details on sensor data injection driver requirements.

4.6.1 Initialization

Every sensor data injection driver must register information with the sensor data injection module in its initialization
function. This information includes a pointer to its physical sensor descriptor, a pointer to the data buffer where incoming
sensor data should be copied, and the packet size for incoming data. The driver should initialize an sdi_entry t

structure as shown in Figure 14 with this data and then call SDI_initializeSensor.

typedef struct sdi _entry type
{
PhysicalSensorDescriptor * sensor;
UInt8 *dataBuffer;
UInt8 packetSize;
struct sdi entry type “*next;
} sdi_entry t;

Figure 15: Sensor Data Injection Structure for Initialization
4.6.2 Set sample rate

The set _sample rate function in a sensor data injection driver must inform the sensor framework of a sample rate change
by calling sensorRateChanged. The sensor data injection module will then send an Injected Sensor Configuration Request
to the host to inform the host of the rate change. The host should respond by adjusting the rate at which it is injecting data to
the sensor.

4.6.3 Get sample data

When injected sensor data is received from the host the sensor data injection module will find the registered sensor driver
with a matching driver ID and then copy the data into the driver’s data buffer that was registered during the sensor driver
initialization. It will then call the sensor interrupt handler for the sensor driver. This results in a call to the get _sample data

function for the sensor driver. At this point, the driver should perform any necessary calculations on the injected data, copy
it into its sensorData buffer, and call the callback. The callback will perform the steps to insert the injected sensor data into

the virtual sensor framework.

4.6.4 Other required sensor functions
Data injection sensor drivers must implement and provide emulated functionality for a minimum set of additional driver
functions, including the following.

e set power mode

® get power mode

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

.
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

e set sample rate

® get sample rate

e get scale factor (acceleration, magnetic field, gyroscope, pressure, humidity, and temperature)
e get dynamic_range

e set _dynamic_ range (acceleration and gyroscope)

4.6.5 Driver config file and custom board file

47117

The driver config file for a sensor data injection driver should specify the driver type as the intended physical driver type (e.g.,

accel, gyro, mag) and the driver ID as any allowed unused driver ID.

It is recommended that a new board file is used to include only the sensor data injection drivers as the physical drivers. Any
virtual sensors that use the same type of physical source data may be included. When specifying the sensor injection driver
as a physical sensor, the bus must be specified as none instead of SPI or 12C. If appropriate, the calibration and offset

values should be identical to those of the actual physical sensor that is being emulated.

4.7 Driver coding requirements

All published sensor drivers must follow the following requirements:

e Req 1.1 The physical driver must include a PhysicalSensorDescriptor definition in the
.phys sensor descriptor section.

e Req 1.2 The SensorDescriptor must contain a non-zero sensor type.

e Req1.3 The SensorDescriptor must contain a non-zero sensor maxI2CSensorSpeed. (Ignored for SPI
interfaces.)

e Req 1.4 The SensorDescriptor must contain a non-zero sensor driverID.

e Req1.5 The SensorDescriptor must contain a non-zero sensor driverVersion.

* Req 2.1 The initialize function must be implemented for BSX INPUT ID MAGNETICFIELD,
BSX INPUT ID ACCELERATION, and BSX INPUT ID ANGULARRATE.
¢ Req 2.2 The initialize function must be implemented for all sensors supporting

SensorPowerModeLowPowerActive OfF SensorPowerModeActive.

e Req 2.3 The initialize function must return SensorErrorNonExistant if no device was found at the

specified 12C address. (Ignored for SPI interfaces.)

e Req 2.4 The initialize function must return SensorErrorUnexpectedDevice if an unknown device was

found at the specified I>°C address. (Ignored for SPI interfaces.)

e Req 2.5 The initialize function must place the sensor into the SensorPowerModePowerDown power mode.

e Req 2.6 The initialize function must not modify the power mode of any other sensor driver.

e Req 3.1 The set_power_mode function must be implemented for all sensors.

e Req3.2 The set_power_mode function must return the actual power mode selected by the sensor driver.

e Req 3.3 The set_power_mode function must select an implemented power mode if that power mode is selected.

e Req 3.4 The set_power_mode function must keep the previous power mode if the requested power mode is not

implemented or supported.

e Req3.5 The set_power_mode function mustimplement SensorPowerModePowerDown and
SensorPowerModeSuspend.

e Req 3.6 The set_power_mode function may select SensorPowerModePowerDown or
SensorPowerModeSuspend if SensorPowerModePowerDown is requested.

e Req 3.7 The set_power_mode function must allow SensorPowerModeLowPowerActive if

SensorPowerModeActive is requested for BSX INPUT ID MAGNETICFIELD, BSX INPUT ID ACCELERATION,

and BSX INPUT ID ANGULARRATE.
e Req 3.8 The set_power_mode function may select SensorPowerModeLowPowerActive or
SensorPowerModeActive if SensorPowerModeLowPowerActive is requested and implemented.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 48 | 71

e Req 3.9 The set_power_mode function should implement SensorPowerModeInterruptMotion for
BSX INPUT ID ACCELERATION.

¢ Req3.10 The set_power_mode function must allow SensorPowerModeOneshot if
SensorPowerModeLowPowerActive and SensorPowerModeActive are not allowed.

e Req 3.11 The sensor must transition from SensorPowerModeOneShot to SensorPowerModeSuspend or
SensorPowerModePowerDown after the sample data was received when in SensorPowerModeOneShot.

e Req3.12 The set_power_mode function must allow SensorPowerModeLowPowerActive and
SensorPowerModeActive if SensorPowerModeOneShot is not allowed.

e Req3.13 The set_power_mode function must allow SensorPowerModeLowPowerActive if
SensorPowerModeActive is allowed.

e Req3.14 The set_power_mode function must not modify the power mode of any other sensor driver.

e Req 3.15 A transition from SensorPowerModePowerDown to any other power state must complete within 1000 ms.

e Req 3.16 A transition from SensorPowerModeSuspend to any higher power state must complete within 100 ms.

e Req3.17 The set_power_mode function must transition from sensorPowerModeSelfTest to
SensorPowerModeSuspend or SensorPowerModePowerDown after a self-test has completed.

e Req3.18 The set_power_mode function must call reportSelfTestResult after the sensor has transitioned from
SensorPowerModeSelfTest t0o SensorPowerModeSuspend Of SensorPowerModePowerDown.

e Req3.19 The set_power_mode function must call sensorPowerModeChanged after the sensor has transitioned to
the requested power.

e Req3.20 The set_power_mode function must ensure that set_sample_rate s called if a sample rate transition
is needed by the driver when transitioning from any active power mode to another active power mode.

e Req 4.1 The set_sample_rate function must be implemented if the sensor supports
SensorPowerModeLowPowerActive Or SensorPowerModeActive.

e Req 4.2 The set_sample_rate function must place the sensor in the maximum sample rate supported when a
value of OxFFFF is specified.

e Req 4.3 The set_sample_rate function must place the sensor in the lowest non-zero sample rate supported
when a value of 1 is specified.

e Req4.4 The set_sample_rate function must return the actual sample rate selected by the sensor driver.

e Req 4.5 The set_sample_rate function must select the requested sample rate or higher, if possible.

e Req4.6 The set_sample_rate function must not lower the sample rate of another sensor driver.

e Req4.7 The set_sample_rate function should not increase the sample rate of another sensor driver unless the
drivers are composites.

e Req 4.8 The set_sample_rate function must call sensorRateChanged after the desired sample rate has been
set.

e Req 4.9 The set_sample_rate function must have the maxRate value set to the maximum rate supported by
the sensor.

e Req4.10 The set_sample_rate function should enforce rates as a power of two decimation from the max rate.

e Req4.11 The set_sample_rate function must select a requested rate, if possible.

e Req 5.1 The set_dynamic_range function must be implemented for BSX INPUT ID ACCELERATION and
BSX INPUT ID ANGULARRATE.

e Req 5.2 The set_dynamic_range function should support a range of +/- 16G for
BSX INPUT ID ACCELERATION.

e Req 5.3 The set_dynamic_range function should support a range of +/- 2000dps for
BSX INPUT ID ANGULARRATE.

e Req 5.4 The set_dynamic_range function must return the actual dynamic range selected by the driver.

e Req 5.5 The set_dynamic_range function must call sensorRangeChanged after the dynamic range has been
set.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 49| 71

e Req 6.1 The get_dynamic_range function must be implemented for all sensor types.
e Req 6.2 The get_dynamic_range function must return the actual dynamic range for the sensors.

e Req 7.1 The enable_interrupts function must be implemented for all sensors.
e Req7.2 The enable_interrupts function must be called before sensor data is transferred from the sensor.
e Req 7.3 The enable_interrupts function must not affect the interrupt status of another sensor.

¢ Req 8.1 The disable_interrupts function must be implemented for all sensors.

¢ Req 8.2 The disable_interrupts function must stop sensor data from being transferred from the sensor.
e Req 8.3 The disable_interrupts function must not affect the interrupt status of another sensor.

e Req8.4 The int_enabled variable must be set if data is being transferred from the sensor.

e Req 9.1 The get_power_mode function must be implemented for all sensors.
e Req9.2 The get_power_mode function must return the power mode of the driver.

e Req10.1 The get_sample_ rate function must be implemented if the sensor supports
SensorPowerModeLowPowerActive Or SensorPowerModeActive.

e Req10.2 The get_sample_rate function must return the selected sample rate of the driver.

e Req11.1 The get_scale_factor function must be implemented for BSX INPUT ID MAGNETICFIELD,
BSX INPUT ID ACCELERATION, BSX INPUT ID ANGULARRATE, BSX INPUT ID PRESSURE,
BSX INPUT ID HUMIDITY, and BSX INPUT ID TEMPERATURE.

e Req11.2 The get_scale_factor function must return floating point scale factor to convert the sensor data into
the correct units.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

.
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

4.8 Example virtual sensor drivers

4.8.1

Continuous virtual sensor

y
50|71

The following example virtual driver is a simple continuous driver which consumes data directly from a physical driver.

[I/17777 7770777777 77
/1777777

/17

/// Qfile VirtPhysicalOutput.c

/17

/// @project EM7189

/17

/// Qbrief Example driver used to report physical sensor data to the
host.

/17

/// @classification Confidential

/17

L1177 7777777777777 777777777777 77777777777777777777777777777777777777
/1177777

#include <SensorAPI.h>

#include <host.h>

#include "VirtPhysicalOutput.h"

#include <arc.h>

#include <FreeRTOS.h>

#define SENSOR_INPUT BSX INPUT ID ACCELERATION /* Physical sensor to
use for trigger source */

#define SENSOR OUTPUT BSX OUTPUT ID ACCELERATION RAW /* Host output type
*/

typedef struct {

SIntle x;
SIntle vy,
SIntle z;
} _attribute ((packed)) output t;

Figure 16: Continuous Virtual Sensor — Header

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

. U Y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 51|71

static SensorStatus handle sensor data(VirtualSensorDescriptor* self,
void* data)
{
output t output;
PhysicalSensorDescriptor* parent =
cast HeaderToPhysical (getSensorParent (cast VirtualToHeader (self)));

float scaleAdjustment = self->expansionData.f32;
float dynamicRange = getDynamicRange (cast PhysicalToHeader (parent));
// Scale to dynamic range, l6bit signed output
float scaleFactor =
parent->get scale factor(parent) * scaleAdjustment * (float)MAX SINTI16
/ dynamicRange;
SystemTime t timestamp = self->timestamp;
SInt32* sendata = data;
SInt32 xi, yi, zi;
float x, vy, z;

portDISABLE INTERRUPTS () ;

xi = sendatal[0];
yi = sendatalll];
zi = sendatal2];

portENABLE INTERRUPTS () ;

X = xi * scaleFactor;
= yi * scaleFactor;
z = zi * scaleFactor;

x = SATURATE (MAX SINT16, x, MIN SINT16);
y = SATURATE (MAX SINT16, y, MIN SINT16);
z = SATURATE (MAX SINT1l6, z, MIN SINT16);

output.x = (SIntlo6)x;
output.y = (SIntl6)y;
output.z = (SIntl6)z;

reportSensorEvent (self, &output, timestamp);

return SensorOK;

}

Figure 17: Continuous Virtual Sensor — Handle_Sensor_Data

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 52|71

VIRTUAL SENSOR DESCRIPTOR VirtualSensorDescriptor DESCRIPTOR NAME = ({

.triggerSource = {
.sensor = {

.type = {

.value = SENSOR INPUT,

.flags = DRIVER TYPE PHYSICAL FLAG,
by
b
by

.physicalSource = {
.sensor ={
.type = {
.value = SENSOR INPUT,
.flags = DRIVER TYPE PHYSICAL FLAG,
}y
}o
Yy

.info = {
.id = DRIVER ID,
.version = DRIVER REV,
b

.type = {
.value = SENSORﬁTYPEiBSX(SENSORﬁOUTPUT),
.flags = DRIVER TYPE VIRTUAL FLAG,

.wakeup ap = FALSE,
by

.expansionData = ({
.£32 = SCALE FACTOR,
b

.priority = PRIORITY 2, // high priority
.handle sensor data = handle sensor data,

.outputPacketSize = sizeof (output t),
}i

Figure 18: Continuous Virtual Sensor — Virtual Sensor Descriptor

4.8.2 On-change virtual sensor

The following example shows the changes that are required to change a continuous virtual driver to an on-change driver.
The key points for writing an on-change driver are to set the sensor descriptor to specify a type of on change and ensure
the get last sensor data function is implemented. In the handle sensor data function, the data should only be

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 53|71

sent if the data has changed. When reporting a sensor eventin get last sensor data, the timestamp of the previous
data sample should be used.

// Implement the get last sensor data function for an on-change driver
static SensorStatus virt get last sensor data(VirtualSensorDescriptor*
self)

{

/* Use the (saved) timestamp from the previous sample sent in

handle sensor data */

reportSensorEvent (self, &output, timestamp);
return SensorOK;

}

VIRTUAL SENSOR DESCRIPTOR VirtualSensorDescriptor DESCRIPTOR NAME = ({

/* All other values are the same as the continuous virtual sensor
*/

.type = {

.value = SENSOR_TYPE_BSX(SENSOR_OUTPUT),

.flags DRIVER TYPE VIRTUAL FLAG,

TRUE, // Change required for on-change driver

.wakeup_ ap

.on_change TRUE, // Change required for on-change driver

by

.handle sensor data = handle sensor data,
.get last sensor data = virt get last sensor data, /* Change required
for on-change driver */

}i

Figure 19: On-Change Virtual Sensor

4.8.3 One-shot virtual sensor

The following example shows the changes that are required to change an on-change virtual driver to a one-shot driver. The
key points for writing a one-shot driver are to update the driver to disable itself after an event is thrown, and make sure the
driver does not throw an event when turned on. These changes should be made in addition to the changes required for an
on-change sensor driver.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

void* data)

{
output t output;

required for one-shot driver

return SensorOK;

}

static SensorStatus handle sensor data(VirtualSensorDescriptor* self,

// Perform all required operations to calculate the output values

reportSensorEvent (self, &output, timestamp);
updateRequestedRate (cast VirtualToHeader (self), 0.0F); // Change

Figure 20: One-Shot Virtual Sensor

4.9 Programming custom code extensions

4.9.1 Overview

Y
54| 71

On the BHy2xx/BHI3xx custom code extensions are implemented as hooks. The hook functionality in the BHy2xx/BHI3xx is
a special mechanism which provides calling of multiple definitions of sensor interface hook functions at defined locations in
the firmware according to priority level. When each main hook function is called by the firmware, all registered hook functions
of that type are also executed. The supported hook types are summarized in Table 23 below.

The flow of hooks called during the start of execution is shown in Figure 20.

Table 23: Supported Hook Types

Hook type Return type | Additional parameters [Notes |

Procedures called during start and stop of execution

initOnce void None
exitShutdow void None
n

initialize void None
teardown void None

Procedures tied to sensor interface

PhysicalRat . PhysicalSensorDescriptor*
void
e phys, float* rate

Called during start of execution,
following hardware initialization. One
time initialization code should be
placed in this function.

Called during start of execution,
following host interface initialization.
Initialization code should be placed
in this function.

Called during start of execution,
following host interface and sensor
initialization. Initialization code
should be placed in this function.

Called during stop of execution
events following an initialization
error. The BHy2 stops operation of
all sensors. The user should ensure
that custom code (such as a timer
call-back) is disabled at this point.

Called any time a rate for a physical
sensor driver is requested. The hook
can overwrite the physical sensor’s
rate by writing a new value to the
*rate parameter.

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

55|71

Hook type Return type | Additional parameters [Notes |

TimerRate

PhysicalRat
e
Changed

PhysicalRan
ge
Changed

VirtualSens
ors
Determined

OverrideMax
Rate

updatePhysi
cal
State

determinePo
wer
State

void

void

void

void

void

void

Sensor
Power
Mode

VirtualSensorDescriptor*
timer, float* rate

PhysicalSensorDescriptor*
phys, float rate

PhysicalSensorDescriptor*
phys, UIntl6 range

None

SensorDescriptorHeader*
sensor, float* rate

PhysicalSensorDescriptor*
phys

PhysicalSensorDescriptor*
phys

Called any time a rate for a physical
sensor driver is required. The hook
can overwrite the sensor’s timer rate
by writing a new value to the *rate
parameter.

Called any time a rate for a physical
sensor driver has changed. Used to
notify listeners that a physical sensor
driver rate has changed.

Called any time the dynamic range
for a physical sensor driver has
changed. Used to notify listeners
that physical sensor driver range has
changed.

Called during checking of sensor
state changes. Used to notify the
listener that the framework has
determined which sensors should be
enabled. The hook can override or
add additional requests here by
setting the info.status.enabled
bit in the desired sensor descriptor.

Called during checking of sensor
state changes. The hook can
overwrite the maximal rate allowed
for a given sensor by writing a new
value to the *rate parameter.

Called during sensor state changes.
Notifies the user that the custom-
controller sensor state changes
should be done now.

Called during sensor state changes.
The default power mode can be
overwritten by returning the desired
power mode from the hook.

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

. L B
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 56| 71

Initialize Firmware Initialize Sensors

*Enable RAM Banks eInstall interrupt handlers, set

¢ Register sensor descriptors HOOK exitShutdown edge and priority
¢ Configure stack o Call sensor initialize functions

eSet up 12C and SPI queues

Initialize Hardware

¢ Configure pulls

« Configure and enable Initialize Host Interface HOOK initialize
interrupts

Initialize Sensor Interfaces

e Parse sensor drivers (form

trigger lists) HOOK initOnce Start RTOS/main loop
¢ Configure SIFs

Figure 21: Hooks Called During Initialization

4.9.2 Hook implementation

Sensor interface hook functions are defined and registered with the base firmware using the HOOK macro.

HOOK(_hook , function , priority , return , ...)
{

/* Function definition here */

}

Figure 22: Definition of Hook Function

The HOOK macro takes a number of arguments listed below:

e hook - The hook type to register

e function - The function to declare and register as a hook client

e priority - The priority of the hook, ranging from HOOK PRIORITY MAX (1) to HOOK PRIORITY MIN (10)
e return - Thereturn type of the hook, specific to each hook type, see Table 23 Return Type column

e ... - Remaining arguments for the hook specific to each hook type, see Table 23 Additional Parameters column

New source files containing hook implementations can be added to the $SDK/user/RamPatches directory. Any new files in
the $SDK/user/RamPatches directory should be added to the RaM PATCHES variable in the CMake config file in the
$SDK/common directory.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 57| 71

4.9.3 Hook priority level

Execution of hooks is ordered by priority level from HOOK PRIORITY MAX (1) to HOOK PRIORITY MIN (10).

// Hook priority definition
#define HOOK_ PRIORITY MAX 1
#define HOOK PRIORITY MIN 10

Figure 23: Hook Priorities

All kernel-level hooks of a given type will run to completion before any user-level hooks are executed. When two or more
user-level hook functions with the same priority level are used, the order of their execution is unpredictable (it depends on
internal sorting). For this reason, utilization of different priority levels is recommended.

4.9.4 Stopping hook execution

In some cases, execution of the rest of chained hook functions must be stopped to save execution time or due to a condition
in the code. To achieve this, there is an extra parameter (bool* stopHookExecution) included by the HOOK macro for
each hook function. Any defined hook function can set stopHookExecution to TRUE to stop execution of the rest of the
registered hooks of the same type and lower priority. For detailed information, please, see section 4.8.6 that provides
examples of hook usage.

4.9.5 Accessing data from hooks

Raw sensor data can be accessed by looking up the physical sensor using the getPhysicalSensorDescriptorByType
or getSensorSource functions. Once the physical sensor descriptor has been located, the descriptor->sensorData
variable can be used to access the raw sensor data. Note that interrupts must be disabled to make the reading of these data
structures atomic.

4.9.6 Usage
This section contains two custom hook definition examples.
4.9.6.1 Hook example 1

The following hook example defines myNewVSDHook as a VirtualSensorsDetermined type hook. It has the lowest
priority and will execute after all higher priority VirtualSensorsDetermined hooks.

#include <hooks support.h>

HOOK (VirtualSensorsDetermined, myNewVSDHook, HOOK PRIORITY MIN, void)

{
UNUSED (stopHookExecution) ;
/* do something useful */

Figure 24: Hook Example 1

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 58| 71

4.9.6.2 Hook example 2

The following hook example defines myNewPRHook as a PhysicalRate type hook. Because this hook sets
stopHookExecution to TRUE, all other PhysicalRate user mode hooks with a priority lower than 5 will not be
executed.

HOOK (PhysicalRate, myNewPRHook, 5, void,
PhysicalSensorDescriptor* phys, float* rate)

{

/* do something useful */

// stop execution of the rest of chained hooks
*stopHookExecution = TRUE;
}

Figure 25: Hook Example 2

4.10 Programming custom user mode libraries

Users can implement custom libraries into the SDK and call library functions within custom user image code, such as
virtual sensors or hooks.

The following steps have to be executed to compile a library into user image:

1) Create a folder in $SDK/libs, containing:
a) <name>.c source file(s) (names don't have to match the folder name, but need to be provided in CMakelLists.txt)
b) CMakelists.txt file, see example below (names are chosen arbitrarily)
c) includes/<name>.h header file(s) exposing function prototypes and constants (names don't have to match the
folder name, the directory including them has to be provided in CMakelLists.txt)
2) In/common/config.<dist_type>.cmake:
a) Add library name (folder name) to the LIBRARIES variable
b) Add library name (folder name) to BOARDS LIBS variable

get filename component (proj ${CMAKE CURRENT LIST DIR}NAME)
project (${proj} C)

set (SOURCES
customlib.c

)

include directories(
../../libs/customlib/includes/
)

ADD C FLAGS (-DNO_JLI CALLS)
ADD_ARC_LIBRARY (${proj}${SOURCES})

EXPORT ARC LIBRARY (${proj})

Figure 26: CMakeLists.txt Example

To use the library functions and data from inside custom user image code, the header files exposing these functions have
to be included within the respective .c files. In order to avoid having to use the full path to the library from the root directory,
users can add the path to the library to the include directories variable of the CMakelLists.txt file of the calling
component.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 59| 71

4.11 Using custom parameters

The primary control channel for configuring and querying the state of the system is done using parameter reads and writes.
Current parameter use is summarized in Table 24. When sending a parameter request to the firmware, the upper byte is
composed of a 0 (set) or 1 (get) in the upper nibble and the parameter page in the lower nibble. The second byte indicates
the parameter number. More details on current parameters can be found in section 14 of the BHI360/BHI260AB/BHA260AB
Datasheet, Reference 1, Reference 2 and Reference 5.

Table 24: Parameters

Parameter o

Meta Event Control, FIFO Control, Firmware
Version, Timestamps, Framework Status,

System (1) 0x0100 — 0x01FF Virtual Sensors Present, Physical Sensors
Present, Physical Sensor Information
Algorithm (2) 0x0200 — Ox02FF Calibration state for physical sensors
Sensor Information structure, including sensor
Sensor Information (3) 0x0300 — Ox03FF type, driver ID, driver version, power, max

range, min/max rate, and others. Read-only
Sensor configuration parameters, including
Sensor Configuration (5) 0x0500 — OxO5FF sample rate, maximum report latency, change
sensitivity, and dynamic range. Read-only
Available for custom use in the BHI260AB. May
be used in other variants.
Available for custom use in the BHI260AB. May
be used in other variants.
Available for custom use in the BHI260AB. May
be used in other variants.
Custom Parameter 4 (12) 0x0C00 — OXOCFF Available for custom use

_ Sensor specific control information, including
Sensor Control (14) 0xOEO00 — OXOEFF FOC, OIS, and FST

Custom Parameter 1 (9) 0x0900 — Ox09FF
Custom Parameter 2 (10) 0x0A00 — OXOAFF

Custom Parameter 3 (11) 0x0B00 — 0XxOBFF

This section describes how users can create their own custom parameters. Parameter pages 9 — 12 can be used to create
custom parameters. Parameter numbers 1-255 are available for custom use within those pages. Parameter number 0 is
reserved.

Note that parameter reads and writes should be used for infrequent control changes and infrequent data output. It is not
recommended for high speed (> 1 Hz) sensor data output.

4.11.1 Initialization

Custom code must register the read and write callbacks for custom parameters by calling registerReadParamHandler
and registerWriteParamHandler and passing in the handled parameter page and handler function. This can be done
in an initoOnce hook type. See Figure 26 for an example which registers new handlers for custom parameter page 9. After
the parameter read and write handlers are registered, the firmware will route host requests for the custom parameters to the
custom handlers appropriately.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 60| 71

#include <SensorAPI.h>

#define MY PARAM PAGE 9

extern bool myReadHandler (UInt8 param, UIntl6 length, UInt8 buffer(],
UIntlé *ret length);

extern bool myWriteHandler (UInt8 param, UIntl6 length, UIntS8

buffer(]);

HOOK (initOnce, myInitOnceHook, HOOK PRIORITY RAM, void)

{
registerReadParamHandler (MY PARAM PAGE, myReadHandler);

registerWriteParamHandler (MY PARAM PAGE, myWriteHandler);
}

Figure 27: Parameter Page Read and Write Callback Registration

4.11.2 Parameter read handler

Custom code may implement a parameter read handler which copies the parameter data to the passed in buffer which is
then returned to the host. As this function blocks much of the system, it is important that the data is copied to the buffer and
returns quickly. Figure 27 includes an example for a parameter read handler.

bool myReadHandler (UInt8 param, UIntlé6 length, UInt8 buffer[], UIntlé6
*ret length)
{
// Save data from my code to host.
switch (param)
{
case MY PARAM:
union {
UInt8 *buffer;
data_ t *my data;
} conv;
conv.buffer = buffer;
// copy my data fields into buffer here

*ret length = sizeof(data t);
break;
default:
return FALSE; // unhandled parameter - indicate error to host

}
return TRUE;

Figure 28: Parameter Read Callback

4.11.3 Parameter write handler

Custom code may implement a parameter write handler which saves the host data into the stored parameter values. As this
function blocks much of the system, it is important that the data is copied from the buffer and returns quickly. See Figure 28

for an example.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 61|71

bool myWriteHandler (UInt8 param, UIntl6 length, UInt8 buffer(])
{
// Save data from host
switch (param)
{
case MY PARAM:
// copy length bytes of data from buffer into my data here

break;
default:
return FALSE; // unhandled parameter - indicate error to host

}
return TRUE;

Figure 29: Parameter Write Callback

4.12 Using general-purpose host registers

The BHy2xx/BHI3xx contains a fixed set of GPIO registers which can be used for communication between the firmware and
the host.

In general, it is proposed to use the parameter interface or the sensor event concept for host communication, however, for
some use cases a set of registers which is accessible both from the host and the firmware is sometimes easier to handle,
since it carries a minimum overhead.

There is a register space of 12 bytes writeable by the host, and accessible read-only by the firmware, and another register
space of 12 bytes writable by the firmware, and read-only accessible from the host.

API functions are available in hif.h for reading and writing these GPIO registers.

The HOST registers should be read using the safeRead8, safeReadl6, or safeRead32 API functions, passing in the
address of the register to be read (e.g. safeRead8 (&HOST.Gpl.r8[01)).

Table 25: Available GPIO Registers for Communication with Host

GPIO Register 12C Register Access Host Access
Address pe pe

HOST.Gp1.r8[0] 0x08

HOST.Gp1.r8[1] 0x09 RO RW

HOST.Gp1.r8[2] 0X0A RO RW

HOST.Gp1.r8[3] 0x0B RO RW

HOST.Gp2.r8[0] 0x0C RO RW

HOST.Gp2.r8[1] 0X0D RO RW Sjr:i;ae' -
HOST.Gp2.r8[2] OXOE RO RW el
HOST.Gp2.r8[3] OXOF RO RW

HOST.Gp3.r8[0] 0x10 RO RW

HOST.Gp3.r8[1] 0x11 RO RW

HOST.Gp3.r8[2] 0x12 RO RW

HOST.Gp3.r8[3] 0x13 RO RW

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 62|71

12C Register Access HostAccess

PROC.Gp5.r8[0] 0x32

PROC.Gp5.r8[1] 0x33 RW RO

PROC.Gp5.r8[2] 0x34 RW RO

PROC.Gp5.r8[3] 0x35 RW RO

PROC.Gp6.r8[0] 0x36 RW RO

PROC.Gp6.r8[1] 0x37 RW RO Sjr:i;a; —
PROC.Gp6.r8[2] 0x38 RW RO registers
PROC.Gp6.r8[3] 0x39 RW RO

PROC.Gp7.r8[0] 0x3A RW RO

PROC.Gp7.r8[1] 0x3B RW RO

PROC.Gp7.r8[2] 0x3C RW RO

PROC.Gp7.r8[3] 0x3D RW RO

The access to these registers is performed asynchronously. The user has to take care that race conditions are avoided. E.g.,
when the firmware updates multiple output registers with a single 32-bit write while the host reads these register sequentially,
some of the values read by the host may be updated, while others still have the old value.

4.13 Watchdog configuration

The watchdog timeout can be disabled, configured, enabled, and cleared using the APIs defined in
$SDK/common/7189/includes/watchdog.h. The watchdog must be disabled before configuring the timeout. Example code to
set the watchdog limit is shown in Figure 29.

// Set the watchdog limit to 10 ms

DisableWatchdog () ;

SetWatchdogLimit (getSYSOSCFrequency () * 10); // 10 ms
EnableWatchdogInterrupt () ;

Figure 30. Setting the Watchdog Limit
4.14 Firmware debugging

4.14.1 Debug message

For debugging a sensor driver the fwrite, puts, and putchar functions are available to store a message in the status
FIFO buffer which can subsequently be read by the host. In addition the print £ library is provided by stdio from MetaWare
and can be enabled in order to have the capability to write an arbitrary string to the host.

Debug output is buffered in a 16-byte buffer. This buffer is sent to the host when full or when one of the debug functions
output a linefeed. The host can cause a partial transfer to be sent by issuing a FIFO Flush command with the flush value set
to FLUSH ALL.

As adding the printf library adds code space and all of these functions can dramatically affect timing, it is highly
recommended that they are only used as a last resort and not included in production code.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 63|71

4.14.2 Post mortem data

When a fatal error occurs due to either a processor exception, watchdog timeout, or an unrecoverable firmware error, the
firmware saves the processor state of the BHy2 including the base registers, relevant auxiliary registers, and the stack. This
debug data can be retrieved using the Download Post Mortem Data command. In response to this command the firmware
will send the Crash Dump status block to the status FIFO.

See section 5 of the BHI260AB/BHA260 datasheets, Reference 1, Reference 2 and Reference 5, for more information on
the download Post Mortem host command and Crash Dump Status Packet.

The backtrace tool in the SDK can be used to analyze the Crash Dump Status Packet.
4.14.2.1 Backtrace Utility

A backtrace utility is provided in the SDK to assist in decoding crash dump data. This utility is built during the normal build
process and will be located in the $SDK/build/bin directory after completing a firmware build. After collecting the binary
crash dump data, backtrace can be run to parse the data, as shown in Figure 30. kernel_debug.elf and kernel-
flash_debug.elf are debug kernel elf files that include a small number of critical symbols from the ROM and kernel images
to provide more information when decoding the crash dump data. These files are included in the SDK in the $SDK/kernel
directory.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

T b y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 64|71

> backtrace pm.bin kernel debug.elf [user.elf]

r0 0x00128001
rl 0x00al2e40
r2 0x00136554
r3 0x00a091cO
gp r26 0x00a05clc
fp r27 0x00al11850
sp r28 0x00all7£f8
ilink r29 0x00124d5c (null)
r30 0x30303030
blink r31 0x0013655c bmil60 accel set sample rate report always
pc 0x001029f2 NullHandler
eret 0x001364c8 bmil60 accel set sample rate
erbta 0x001364b4 bmil6e0 accel set sample rate
erstatus 0x8000481le
ecr 0x00020000
efa 0x001364c8
icause 0x00000000
mpu_ecr 0x00000000

diag 0x00000002
debug state 0x000000b2
debug val 0x00000000
error val 0x00000000
interrupt 0x00000000
err report 0x00000044

stack start 0x00a05clc
stack pointer 0x00all7f8

stack size 0x00001000
reset reason 0x00000004

stack CRC 0xddd70c3f
CRC 0xlaa74558

0x001029F2: NullHandler
<r0>=0x00128001, <rl>=0x00al2ed40, <r2>=0x00136554, <r3>=0x00a091cO,
<r4>=0x00000000, <r5>=0x00al2e40, <r6>=0x00000000, <r7>=0x0000000f,
<r8>=0x0000003f, <r9>=0x00all7bb, <rl0>=0x10101010, <rl1l1>=0x00000001,
<rl2>=0x00000001, <rl3>=0x00al1l27f0, <rl4>=0x00000004, <rl5>=0x00al2ed4,
<rl6>=0x42c80000, <rl7>=0x00al2e40, <rl1l8>=0x00000008, <rl1l9>=0x00000000,
<r20>=0x00al2b40, <r21>=0x21212121, <r22>=0x22222222, <r23>=0x23232323,
<r24>=0x24242424, <r25>=0x25252525, <r26>=0x00a05clc, <r27>=0x00al11850,
<sp>=0x00al17f8, <ilink>=0x00124d5c, <r30>=0x30303030, <blink>=0x0013655c

Figure 31 : Backtrace Utility
4.14.3 Current system time

The current system time can be determined by calling the get SystemTime function provided by the Timer library (prototype
in $SDK/libs/Time/includes/Timer.h).

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

4.14.4 Monitoring stack usage

y
65|71

The optional kernel firmware image RAM patch is available which reports stack space and usage. By default this RAM patch

is included in the kernel firmware image.

After loading RAM/Flash firmware, stack information including task name, total stack size, and free/unused stack size is
available by reading parameter ID 0x0110. See Figure 31 for an example.

Stack Info

0x00: Task Name

0x08: Total Stack Size
0x0C: Free Stack Size

0x10: Task Name

0x18: Total Stack Size
0x1C: Free Stack Size

0x20: Task Name

0x28: Total Stack Size
0x2C: Free Stack Size

0x30: Task Name

0x38: Total Stack Size
0x3C: Free Stack Size

0x40: Task Name

0x48: Total Stack Size
0x4C: Free Stack Size

0x50: Task Name

0x58: Total Stack Size
0x5C: Free Stack Size

0x60: Task Name

0x68: Total Stack Size
0x6C: Free Stack Size

Idle

0x000007E8 (2024)

0x00000694 (1684)
4Virt

0x000009E8 (2536)

0x0000091C (2332)
3Virt

0x000009E8 (2536)

0x000005F8 (1528)
2Virt

0x000009E8 (2536)

0x0000091C (2332)
Sensor

0x000009E8 (25306)

0x00000710 (1808)
Host

0x00000BE8 (3048)

0x00000A44 (2628)
CalibBSX

0x000017E8 (6120)

0x00001570 (5488)

4.15 Using RTOS APIs

Figure 32 : Stack Usage Report

OpenRTOS V9.0.0 is built in ROM. The RTOS header files can be found in SDK "libs/openrtos/include”. The RTOS
configurations in "FreeRTOSConfig.h" is as below:

#define
#define

configUSE PREEMPTION
configUSE_IDLE_HOOK
#define configUSE TICK HOOK
#define configCPU CLOCK HZ

* 1000u))

#define configTICK RATE HZ
#define configMAX PRIORITIES

~ O R

(unsigned long)

portTickType)
)

(getSYSOSCFrequency ()

500)

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

configMINIMAL STACK SIZE
configTOTAL HEAP SIZE

configMAX TASK_NAME LEN
configUSE TRACE FACILITY
configUSE CUSTOM TRACE FACILITY
configUSE 16 BIT TICKS
configIDLE SHOULD YIELD
COHfiqUSE_MUTEXES

configUSE RECURSIVE MUTEXES

configSUPPORT DYNAMIC ALLOCATION
configCHECK FOR_STACK OVERFLOW
configUSE MALLOC FAILED HOOK

configUSE PORT OPTIMISED TASK SELECTION
configSUPPORT STATIC_ ALLOCATION
configUSE TICKLESS IDLE

P RPRP OO0~~~ ~~

P PP OOO

P~ ~ 0 ~

6

unsigned short) 512
size £t) (0))

)

// added by EMUS

)

// 2KB min

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

.
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

66 | 71

/* Set max syscall interrupt priority to around half available number of priorities,
* e.g. for 16, use 8 - interrupts from 0 thru 7 inclusive (highest priority = 0)

* can still interrupt the kernel when it's in a critical section and during context
* switches. */

#ifdef TARGET EM STARTER KIT

#define ConfigNUMBER_INTERRUPT_PRIORITIES 2

#define configMAX SYSCALL INTERRUPT PRIORITY 1
#else

#define COI’lfigNUMBERiINTERRUPTiPRIORITIES 8

#define ConfigMAX_SYSCALL_INTERRUPT_PRIORITY 4
#endif

#define configLOWEST INTERRUPT PRIORITY (configNUMBER INTERRUPT PRIORITIES - 1)

/* Co-routine definitions. */
#define configUSE CO_ROUTINES 0
#define configMAX CO ROUTINE PRIORITIES (2)

/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */

#define INCLUDE vTaskPrioritySet
#define INCLUDE uxTaskPriorityGet
#define INCLUDE vTaskDelete

#define INCLUDE vTaskCleanUpResources
#define INCLUDE vTaskSuspend

#define INCLUDE vTaskDelayUntil
#define INCLUDE vTaskDelay

#define INCLUDE xQueueGetMutexHolder
#define INCLUDE xTaskGetSchedulerState
#define INCLUDE xTaskGetCurrentTaskHandle

HFRE R R RO R

According to this configuration, the enabled RTOS APIs are:

Table 26: Enabled RTOS APIs

Semaphore and Mutex
Task related Event related Queue related

pcTaskGetName vEventGroupDelete uxQueueMessagesWaiting xSemaphoreCreateBinaryStati
ulTaskNotifyTake xEventGroupClearBits uxQueueMessagesWaitingFro ¢

uxTaskGetNumberOfTasks xEventGroupCreateStatic mISR xSemaphoreTake
uxTaskPriorityGet xEventGroupGetBitsFromISR uxQueueSpacesAvailable xSemaphoreTakeRecursive
uxTaskPriorityGetFromISR xEventGroupSetBits vQueueDelete xSemaphoreGive

vTaskDelay xEventGroupSync xQueueCreate MutexStatic xSemaphoreGiveRecursive
vTaskDelayUntil xEventGroupWaitBits XQueueGenericCreateStatic xSemaphoreGiveFromISR
vTaskDelete XQueueGenericReceive xSemaphoreTakeFromISR
vTaskEndScheduler XQueueGenericReset xSemaphoreCreateMutexStatic
vTaskNotifyGiveFromISR XQueueGenericSend xSemaphoreCreateRecursive
vTaskPrioritySet XQueueGenericSendFromISR MutexStatic

vTaskResume XQueueGetMutexHolder xSemaphoreCreateCountingSt
vTaskSetTimeOutState XQueueGiveFromISR atic

vTaskStartScheduler XQueueGiveMutexRecursive vSemaphoreDelete
vTaskStepTick xQueuelsQueueEmptyFromlS xSemaphore GetMutexHolder
vTaskSuspend R uxSemaphoreGetCount
vTaskSuspendAll XQueuelsQueueFullFromISR

xTaskCheckForTimeOut XQueuePeekFromISR

xTaskCreateRestrictedStatic XQueueReceiveFromISR

xTaskCreateStatic xQueueTakeMutexRecursive

xTaskGenericNotify

xTaskGenericNotifyFromISR
xTaskGetCurrentTaskHandle
xTaskGetSchedulerState
xTaskGetTickCount
xTaskGetTickCountFromISR
xTaskNotifyStateClear
xTaskNotifyWait
xTaskResumeAll
xTaskResumeFromISR

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

.
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

A
67| 71

The disabled RTOS APIs are:
Table 27: Disabled RTOS APIs

Task related RQueue & Buffer related Timer related Others related

eTaskGetState
pvTaskGetThreadLocalStoragePointer
vTaskSetThreadLocalStoragePointer
taskDISABLE_INTERRUPTS
taskENABLE_INTERRUPTS
taskENTER_CRITICAL
taskENTER_CRITICAL_FROM_ISR
taskEXIT_CRITICAL
taskEXIT_CRITICAL_FROM_ISR
taskYIELD

ulTaskEndTrace
ulTaskNotifyValueClear
uxTaskGetStackHighWaterMark
uxTaskGetSystemState
vTaskAllocateMPURegions
vTaskGetInfo
vTaskGetRunTimeStats
vTaskList
vTaskSetApplicationTaskTag
vTaskStartTrace
xTaskAbortDelay
xTaskCallApplicationTaskHook
xTaskCatchUpTicks

xTaskCreate
xTaskCreateRestricted
xTaskDelayUntil
xTaskGetApplicationTaskTag
xTaskGetCheckForTimeOut
xTaskGetHandle
xTaskGetldleTaskHandle
xTaskNotify
xTaskNotifyAndQuery
xTaskNotifyAndQueryFromISR
xTaskNotifyFromISR
xTaskNotify Give

pcQueueGetName
vMessageBufferDelete
vQueueAddToRegistry
vQueueUnregisterQueue
vStreamBufferDelete
xMessageBufferCreate
xMessageBufferCreateStatic
xMessageBufferlsEmpty
xMessageBufferlsFull
xMessageBufferReceive
xMessageBufferReceiveFromISR
xMessageBufferReset
xMessageBufferSend
xMessageBufferSendFromISR
xMessageBufferSpacesAvailable
xQueueAddToSet
XQueueCreate
XQueueCreateSet
xQueueCreateStatic
xQueueOverwrite
xQueueOverwriteFromISR
xQueuePeek

xQueueReceive
xQueueRemoveFromSet
XQueueReset
XQueueSelectFromSet
XQueueSelectFromSetFromISR
xQueueSend
XxQueueSendFromISR
xQueueSendToBack
xQueueSendToBackFromISR
XxQueueSendToFront
XQueueSendToFrontFromISR
xStreamBufferBytesAvailable
xStreamBufferCreate
xStreamBufferCreateStatic
xStreamBufferlsEmpty
xStreamBufferlsFull
xStreamBufferReceive
xStreamBufferReceiveFromISR
xStreamBufferReset
xStreamBufferSend
xStreamBufferSendFromISR
xStreamBufferSetTriggerLevel
xStreamBufferSpacesAvailable

pcTimerGetName
pvTimerGetTimerlD
uxTimerGetReloadMode
vTimerSetReloadMode
vTimerSetTimer|D
xTimerChangePeriod
xTimerChangePeriodFromISR
xTimerCreate
xTimerCreateStatic
xTimerDelete
xTimerGetExpiry Time
XxTimerGetPeriod
xTimerGetTimerDaemonTaskHandle
xTimerlsTimerActive
xTimerPendFunctionCall
xTimerPendFunctionCallFromISR
xTimerReset
xTimerResetFromISR
xTimerStart
xTimerStartFromISR
XxTimerStop
xTimerStopFromISR

xEventGroupClearBitsFro
mISR
XEventGroupCreate
xEventGroupGetBits
xEventGroupSetBitsFroml
SR
vSemaphoreCreateBinary
xSemaphoreCreateBinary
xSemaphoreCreateCounti
ng
xSemaphoreCreateMutex
xSemaphoreCreateRecurs
iveMutex

crDELAY
crQUEUE_RECEIVE
crQUEUE_RECEIVE_FR
OM_ISR
crQUEUE_SEND
crQUEUE_SEND_FROM_
ISR

vCoRoutineSchedule
xCoRoutineCreate

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

. U Y y
Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 68| 71

5 References

Reference 1: BHI260AB Datasheet (BST-BHI260AB-DS000)
Reference 2: BHA260AB Datasheet (BST-BHA260AB-DS000)

Reference 3: Synopsys MetaWare Website https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware

Reference 4: Synopsys Github FOSS Toolchain for ARC® processors Website https://github.com/foss-for-synopsys-dwc-
arc-processors/toolchain/releases

Reference 5: BHI360 Datasheet (BST-BHI360-DS000)

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual 69|71

6 Legal disclaimer

6.1 Engineering samples

Engineering Samples are marked with an asterisk (*) or (e) or (E). Samples may vary from the valid technical specifications
of the product series contained in this document. They are therefore not intended or fit for resale to third parties or for use in
end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the
testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall
indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

6.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters
of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are
those for which a malfunction is expected to lead to bodily harm, death, or severe property damage. In addition, they shall
not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical, or biological
proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications (including
but not limited to satellite technology).

The resale and/or use of Bosch Sensortec products are at the purchaser’s own risk and his own responsibility. The
examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third-party claims arising from any product use not covered by the
parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in
connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to product
safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

6.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the
application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without
limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given
in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for
illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding
functionality, performance or error has been made.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec | BHy2xx/BHI3xx Programmer’s Manual

7 Trademark notice

ARCP® s a registered trademark of Synopsys Inc.

8 Document history and modifications

Y
70| 71

Chapter ‘ Description of modification/changes
1.4 All Main release 2020-02-04
1.5 3,4 Fixed typos and added missing descriptions 2020-05-28
1.6 All Added new BHI360 related information 2021-09-15
1.7 415 Add ROTS APIs in 4.15 2022-01-27
1,1.1.1.1, Update the MetaWare and Gcc compiler version 2023-02-01
1.1.2,1.1.2.1, | Add BHI360 info
1.8 3, 3.1x, Supply virtual and physical sensor defines
4.1.21, Modify Figure 6
41.2.2,
1.9 All Update naming as BHy2xx/BHI3xx 2023-04-01
2.0 2.1.4 Add memory map and diagram 2023-06-06
2.6 all General review 2024-03-15

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

Bosch Sensortec GmbH
Gerhard-Kindler-Straf3e 9
72770 Reutlingen / Germany

www.bosch-sensortec.com

Modifications reserved

Preliminary - specifications subject to change without notice
Document number: BST-BHy2xx-BHI3xx-AN002-06
Revision: 2.6

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHy2xx-BHI3xx-AN002-06

http://www.bosch-sensortec.com/

	List of Figures
	List of Tables
	General description
	1 Prerequisites and installation
	1.1 Compiler toolchains
	1.1.1 Obtaining and installing the Synopsys MetaWare C compiler
	1.1.1.1 Linux
	1.1.1.2 Windows

	1.1.2 Obtaining and installing the GNU C compiler for BHy2xx/BHI3xx
	1.1.2.1 Linux
	1.1.2.2 Windows

	1.2 Software Development Kit for BHy2xx/BHI3xx
	1.2.1 Linux
	1.2.2 Windows

	2 SDK structure and features
	2.1 SDK and firmware structure
	2.1.1 Overview of SDK structure
	2.1.2 Overview of firmware structure
	2.1.2.1 Kernel Mode and User Mode RAM Images

	2.1.3 Available memory resources for custom Code
	2.1.4 Memory Configuration and Memory Map
	2.1.4.1 On-Chip Memory
	2.1.4.2 Peripheral Space

	2.2 Firmware configuration (using board configuration file)
	2.2.1 Global configuration
	2.2.2 Physical drivers
	2.2.3 Virtual drivers

	2.3 Build system and build targets
	2.3.1 Compiling firmware
	2.3.1.1 Setting environment for compilation
	2.3.1.2 Firmware generation for supported boards

	2.3.2 Configuring the firmware build (using the main CMake file)
	2.3.3 Selecting the toolchain

	3 BHy2xx/BHI3xx driver architecture
	3.1 General flow of data

	4 Software development for BHy2xx/BHI3xx using the software framework
	4.1 Sensor driver overview
	4.1.1 Sensor driver types
	4.1.1.1 Physical sensors
	4.1.1.2 Virtual sensors
	4.1.1.3 Timer sensors

	4.1.2 Predefined sensors
	4.1.2.1 Physical sensor types
	4.1.2.2 Virtual sensor types
	4.1.2.3 User provided physical sensor types
	4.1.2.4 User provided virtual sensor types

	4.1.3 Sensor priority level
	4.1.4 Sensor trigger chaining
	4.1.5 Driver hang detection

	4.2 Drivers directory structure
	4.3 Driver CMakeLists.txt file
	4.4 Checking for existing Driver IDs
	4.5 Writing driver code
	4.5.1 Recommended include files
	4.5.2 Sensor communication support
	4.5.2.1 Sensor communication APIs
	4.5.2.2 Sensor communication best practices

	4.5.3 Sensor descriptor structure
	4.5.3.1 Sensor descriptor header
	4.5.3.2 Physical sensor descriptor fields
	4.5.3.3 Virtual/timer sensor descriptor fields

	4.5.4 Sensor driver functions
	4.5.4.1 Sensor State and Parameter Setting Functions
	4.5.4.2 Sensor state and parameter query functions
	4.5.4.3 Sensor data handling functions
	4.5.4.4 Virtual sensor data handling functions

	4.5.5 Using custom sensor IDs to send data to the host
	4.5.6 Connection between Driver ID and Sensor ID
	4.5.7 Virtual sensor host interface
	4.5.8 Handling special cases

	4.6 Sensor data injection drivers
	4.6.1 Initialization
	4.6.2 Set sample rate
	4.6.3 Get sample data
	4.6.4 Other required sensor functions
	4.6.5 Driver config file and custom board file

	4.7 Driver coding requirements
	4.8 Example virtual sensor drivers
	4.8.1 Continuous virtual sensor
	4.8.2 On-change virtual sensor
	4.8.3 One-shot virtual sensor

	4.9 Programming custom code extensions
	4.9.1 Overview
	4.9.2 Hook implementation
	4.9.3 Hook priority level
	4.9.4 Stopping hook execution
	4.9.5 Accessing data from hooks
	4.9.6 Usage
	4.9.6.1 Hook example 1
	4.9.6.2 Hook example 2

	4.10 Programming custom user mode libraries
	4.11 Using custom parameters
	4.11.1 Initialization
	4.11.2 Parameter read handler
	4.11.3 Parameter write handler

	4.12 Using general-purpose host registers
	4.13 Watchdog configuration
	4.14 Firmware debugging
	4.14.1 Debug message
	4.14.2 Post mortem data
	4.14.2.1 Backtrace Utility

	4.14.3 Current system time
	4.14.4 Monitoring stack usage

	4.15 Using RTOS APIs

	5 References
	6 Legal disclaimer
	6.1 Engineering samples
	6.2 Product use
	6.3 Application examples and hints

	7 Trademark notice
	8 Document history and modifications

